Polarized neutron birefringence in polarized 3He and precision NMR measurements in ³He SEOP cells for nuclear few body physics

Sepehr Samiei⁽¹⁾, Earl Babcock(2), Mike Snow(1), Hao Lu⁽⁶⁾, Steven Parnell^(3,5), Anna Berger⁽⁴⁾, Freddie Akeroyd⁽⁵⁾, $\overline{}$ Dirk Honecker⁽⁵⁾, Robert NSF Grant: Dalgliesh⁽⁵⁾ and many others. Sepehr Samiei⁽¹⁾, Earl
Babcock⁽²⁾, Mike Snow⁽¹⁾, Hao
Lu⁽⁶⁾, Steven Parnell^(3,5), Anna
Berger⁽⁴⁾, Freddie Akeroyd⁽⁵⁾,
Dirk Honecker⁽⁵⁾, Robert ^{NSF Grant:}
Dalgliesh⁽⁵⁾ and many others.
^{2) Indiana Univers} Sepehr Samiei⁽¹⁾, Earl
Babcock⁽²⁾, Mike Snow⁽¹⁾, Hao
Lu⁽⁶⁾, Steven Parnell^(3,5), Anna
Berger⁽⁴⁾, Freddie Akeroyd⁽⁵⁾,
Dirk Honecker⁽⁵⁾, Robert
Dalgliesh⁽⁵⁾ and many others.
¹⁾ Indian University of Techno Sepehr Samiei⁽¹⁾, Earl
Babcock⁽²⁾, Mike Snow⁽¹⁾, Hao
Lu⁽⁶⁾, Steven Parnell^(3,5), Anna
Berger⁽⁴⁾, Freddie Akeroyd⁽⁵⁾,
Dirk Honecker⁽⁵⁾, Robert ^{NSF Grant:}
Dalgliesh⁽⁵⁾ and many others.
²⁾ Forschungsreak Sepehr Samiei⁽¹⁾, Earl
Babcock⁽²⁾, Mike Snow⁽¹⁾, Hao
Lu⁽⁶⁾, Steven Parnell^(3,5), Anna
Berger⁽⁴⁾, Freddie Akeroyd⁽⁵⁾,
Dirk Honecker⁽⁵⁾, Robert ^{NSF Grant:}
Dalgliesh⁽⁵⁾ and many others.
^{2) Forschungsreakt} Sepehr Samiei⁽¹⁾, Earl
Babcock⁽²⁾, Mike Snow⁽¹⁾, Hao
Lu⁽⁶⁾, Steven Parnell^(3,5), Anna
Berger⁽⁴⁾, Freddie Akeroyd⁽⁵⁾,
Dirk Honecker⁽⁵⁾, Robert MSF Grant:
Dalgliesh⁽⁵⁾ and many others.
²⁾ Indiana Universi Sepehr Samiei⁽¹⁾, Earl
Babcock⁽²⁾, Mike Snow⁽¹⁾, Hao
Lu⁽⁶⁾, Steven Parnell^(3,5), Anna
Berger⁽⁴⁾, Freddie Akeroyd⁽⁵⁾,
Dirk Honecker⁽⁵⁾, Robert MSF Grant:
Dalgliesh⁽⁵⁾ and many others.
²⁾ Indiana Universi

Office of NSF Grant: NSF PHY-2209481lational Laboratory

-
-
-
-
-

U.S. National Science Foundation

Theory Motivation and Experimental Goals

- Theory Motivation and Experimental Goals
1. Three-nucleon (3N) interactions contribute ~5% of the binding energy of nuclei
but are poorly constrained by experiment. This blocks nuclear theory from
reliable computations of Theory Motivation and Experimental Goals
Three-nucleon (3N) interactions contribute ~5% of the binding energy of nuclei
but are poorly constrained by experiment. This blocks nuclear theory from
reliable computations of cer Theory Motivation and Experimental Goals
Three-nucleon (3N) interactions contribute ~5% of the binding energy of nuclei
but are poorly constrained by experiment. This blocks nuclear theory from
reliable computations of cer Theory Motivation and Experimental Goals
Three-nucleon (3N) interactions contribute ~5% of the binding energy of nuclei
but are poorly constrained by experiment. This blocks nuclear theory from
reliable computations of cer **Theory Motivation and Experimental Goals**
Three-nucleon (3N) interactions contribute ~5% of the binding energy of nuclei
but are poorly constrained by experiment. This blocks nuclear theory from
reliable computations of **Theory Motivation and Experimental Goals**

2. Three-nucleon (3N) interactions contribute ~5% of the binding energy of nuclei

but are poorly constrained by experiment. This blocks nuclear theory from

reliable computatio **Theory Motivation and Experimental**
Three-nucleon (3N) interactions contribute ~5% of the binding
but are poorly constrained by experiment. This blocks nuc
reliable computations of certain properties of stable nuclei and **Experimental Goals**
te ~5% of the binding energy of nuclei
ent. This blocks nuclear theory from
s of stable nuclei and of the many new
I create in the future. In particular, the
orly understood.
spendent observables in n **Theory Motivation and Experimental Goals**
Three-nucleon (3N) interactions contribute ~5% of the binding energy of nuclei
but are poorly constrained by experiment. This blocks nuclear theory from
reliable computations of **Theory Motivation and Experiment**
Three-nucleon (3N) interactions contribute ~5% of the bin
but are poorly constrained by experiment. This blocks
reliable computations of certain properties of stable nuclei
nuclei that r
- b of the scattering amplitude $b 4$ and $-4/2 2$ and $+ b$

M. C. Atkinson, W. H. Dickhoff, M. Piarulli, A. Rios , and R. B. Wiringa, Phys. Rev. C 102, 044333 (2020).

Calvin W Johnson et al 2020 J. Phys. G: Nucl. Part. Phys. 47 123001

Measurement of b_i in n-³He

1. Define the "incoherent" scattering length b_i of a neutron on a nucleus of spin I as **Measurement of** b_i **in n-³He**
Define the "incoherent" scattering length b_i of a neutron on a nucleus of spin I as
proportional to the difference $\Delta b = b_+ - b_-$ of the bound scattering lengths in sp
channels J=I+/- 1/ $\frac{1}{+}-b$ $\frac{1}{-}$ of the bound scattering lengths in spin **Measurement of** b_i **in n-³He**
Define the "incoherent" scattering length b_i of a neutron on a
proportional to the difference $\Delta b = b_+ - b_-$ of the bound sca
channels J=I+/- 1/2.
 $b_i = \frac{I\sqrt{I+1}(b_+ - b_-)}{(2I+1)}$

$$
b_i = \frac{I\sqrt{I+1}(b_+ - b_-)}{(2I+1)}
$$

2. Δb measured in polarized neutron transmission through a polarized target from the phase shift ϕ^* of the polarized neutron in the polarized medium, which is birefringent for neutrons (called "pseudomagnetic precession"):

$$
\Delta b = \frac{2\phi^*}{\lambda P_3 N d} = \frac{\sigma_p}{\lambda_{th.}} \frac{2\phi^*}{\cosh^{-1} R}
$$

where P_3 is the target polarization, N the target number density, d the target length, λ the neutron de Broglie wavelength (more later on last equation)

Method for b_i : Neutron Spin Echo 1

- **Method for** b_i **: Neutron Spin Echo 1**
1. ³He is polarized with spin-exchange optical pumping (SEOP) by polarizing an alkali vapor with circularly
polarized laser light and then letting the alkali polarize the ³He thr **Method for** b_i **: Neutron Spin Echo 1**
^{3He} is polarized with spin-exchange optical pumping (SEOP) by polarizing an alkali vapor with circularly
polarized laser light and then letting the alkali polarize the ³He throug **Method for** b_i **: Neutron Spin Echo 1**
³He is polarized with spin-exchange optical pumping (SEOP) by polarizing an alkali vapor with circularly
polarized laser light and then letting the alkali polarize the ³He throug **Method for** b_i **: Neutron Spin Echo 1**
^{3He} is polarized with spin-exchange optical pumping (SEOP) by polarizing an alkali vapor with circu
polarized laser light and then letting the alkali polarize the ³He through hyp
-
-

Method for b_i : Neutron Spin Echo 2

- 1. A phase coil is scanned in small steps around the point where the two NSE precession regions field integrals are balanced.
- 2. We have seen a clear spin echo envelope from our previous run.
- 3. This "test" measurement, done for another experiment, compares well to the two other measurements done on this before and NSE³He, Pixel (13,22) $\Delta\phi$ = -42.88° yielded despite only several hours beam time: $\Delta b = [-5.27 \pm 0.05 \text{ (stat.)} - 0.05 \text{ (syst.)}] \text{ fm.}$

Zimmer, O., Ehlers, G., Farago, B. et al. A precise measurement of the spindependent neutron scattering length of 3 He. EPJ direct 4, 1–28 (2002)

M. G. Huber, M. Arif, W. C. Chen, T. R. Gentile, D. S. Hussey, T. C. Black, D. A. Pushin, C. B. Shahi, F. E. Wietfeldt, and L. Yang, Phys. Rev. C 90, 064004 (2014).

INDIANA UNIVERSITY BLOOMINGTON

Preliminary b_i Result: Limited by P_3 Precision

- 1. Neutron scattering length measurements in few-body systems are sensitive enough to probe small effects not yet adequately treated in present theoretical models.
- 2. Dominant error is NOT the phase shift ϕ^* : it is P_3 4.8 $\left\{\frac{1}{\Xi}\right\}$ $\left\{\frac{1}{\Xi}\right\}$ 3 ILL (2002)
- 3. We have a trick to determine P_3 , but the trick requires P_4 , $\frac{1}{2}$ us to also measure the n-³He spin-dependent total cross $\frac{2}{5}$ section σ_p .

"This work" added from: H. Lu, O. Holderer, A. Ioffe, S. Pasini, P. Pistel, Z. Salhi, B. M. Goodson, W. M. Snow, and E. Babcock, A Complete Approach to Determine the ³He neutron incoherent scattering length b_i , Phys. Rev. C 108, L031001 (2023). arXiv:2303.07031

How to Determine both b_i and σ_p • For b_i one must determine the product P₃ Ndλ with high precision.
• The transmission ratio T(P₃)/T(0)=cosh[σ_p P₃ Ndλ/ λ_{tn}] can be measured very accurately and would give us what we need, IF σ_p was kno

-
- The transmission ratio $T(P_3)/T(0)$ =cosh $[\sigma_0 P_3 N d\lambda/\lambda_{th}]$ can be measured very accurately and would give us what we need, IF σ_{p} was known well enough
- $\sigma_{\rm p} = \sigma_{\rm p}$ [J=0] + $\sigma_{\rm p}$ [J=1] . $\sigma_{\rm p}$ [J=0] is already known, but no one has measured σ_p [J=1] . If we can measure P₃ absolutely, then T(P₃)/T(0) will give us σ_p [J=1]. $\qquad \qquad \qquad \qquad$ For a uniformly magnetized medium one can calculate the relation between internal magnetization M₃ = μ_3 P₃N and the magnetic field B₃ : B₃= μ_0 M₃ (1-2/3) for our geometry
- For a uniformly magnetized medium one can calculate the relation between internal magnetization M₃ = μ_3 P₃N and the magnetic field B₃ : B₃= μ_0 M₃ (1-2/3) for our geometry
- The problem is then measuring B_3 by NMR in a cell with this calculable \blacksquare geometry.

B_3 Measurement

- The field experienced by the ³He nuclei **in the field experienced by the ³He nuclei**
in our particular cell geometry: B₃= μ_0M_3
(1-2/3)
This is the field of the scalar contact $(1-2/3)$
- This is the field of the scalar contact subtracted from the field of a uniformly magnetized cylinder. 2% correction is made for a finite cylinder.
- D/L ratio is calculable
- This corresponds to a 6 Hz shift in FID frequency when the cell is 100% polarized.

B₃ Measurement

- We had 6 coils fixed across the length of the $\frac{1}{4.6}$ cell, and about 5000 Free Induction Decay (FID) signals were measured in the neutron run.
- The signal to noise ratio is high enough for good fits to FID pulses. The signal to noise ratio is high

enough for good fits to

FID pulses.

But our frequency shifts are not the right size

for the 50% ³He polarization.
- for the 50% 3He polarization.
- We observe frequency "pulling" effects from masing.

Radiation Damping (RD) Correction

- **Radiation Damping (RD) Correction**
• The feedback from the field of the precessing FID creates eddy currents in
the FID probe, which creates an opposing oscillating magnetic field to the
motion of the decaying magnetizati the FID probe, which creates an opposing oscillating magnetic field to the motion of the decaying magnetization.
- In the higher Zeeman splitting energy (masing state) the polarized helium can be treated as an impedance load coupled to the resonating circuit.
- This creates a phenomenon called "frequency pulling".

Correction for Frequency Pulling

- By carefully simulating the spin coil interaction we can correct for the effect.
- But we first need the damping parameters and initial conditions.
- But we first freed the damping
parameters and initial conditions.
• We must construct an additional coil
which is RD proof to check the
validity of the model.
• This in turn requires active
feedback, which we can do which is RD proof to check the validity of the model.
- This in turn requires active feedback, which we can do for all coils to get rid of the systematic $\qquad 0.5$ effect once and for all and repeat the measurement.

Active feedback

• In order to combat RD we have decided to implement a well-known addition to the FID circuit.

An active feedback scheme for low field NMR. experiments

E Baudin¹, K Safiullin¹, S W Morgan^{1,2} and P-J Nacher^{1*}

¹ Laboratoire Kastler Brossel, ENS; CNRS; UPMC; 24 rue Lhomond, 75005 Paris, France. ² Laboratoire Structure et Dynamique par Résonance Magnétique, IRAMIS, CEA, CNRS, UMR 3299 SIS2M, CEA/Saclay, 91191 Gif-sur-Yvette, France.

E-mail: nacher@lkb.ens.fr

Active feedback

- The paper presents an active feedback circuit for improving low field NMR and MRI experiments, particularly for frequencies below 100 kHz.
- Reduces radiation damping without sacrificing Feedback loop signal-to-noise ratio (SNR)
- The scheme uses a feedback control box to adjust the phase and amplitude of the feedback signal. This is coupled to the NMR tank circuit via a small transformer.

Conclusion

- 1. We have shown that we can get the statistical accuracy required on ∅.
- 2. We have a new idea for σ_p with promising data from ISIS. The σ_p data is the dominant error in previous b_i measurements and will reduce their stated errors. σ_p is a second new few body measurement (in addition to b_i that can be the subject of theory calculation).
- 3. With the incorporation of active feedback system, we should be able to get rid of frequency pulling.
- 4. With σ_p and Ø determined to high precision we can get b_i to 0.1% precision.
- 5. A proposal for repeating this measurement at ISIS in the spring will be submitted.

References

- 1. H. Lu, M. J. Barlow, D. Basler, P. Gutfrunde, O. Holderer, A. Ioffe, S. Pasini, P. Pistel, Z. Salhi, K. Zhernenkov, B. M. Goodson, W. M. Snow, and E. Babcock, First Measurement of Neutron Birefringence in Polarized 129Xe and 131Xe Nuclei, Phys. Rev. C 109, L011001 (2024). arXiv:2301.00460
- 2. H. Lu, O. Holderer, A. Ioffe, S. Pasini, P. Pistel, Z. Salhi, B. M. Goodson, W. M. Snow, and E. Babcock, A Complete Approach to Determine the 3He neutron incoherent scattering length b_i Phys. Rev. C 108, L031001 (2023). arXiv:2303.07031

Thanks!

$$
\boldsymbol{\sigma_p} \otimes \boldsymbol{b}_i
$$

1. The σ_p data is the main cause of error in previous b_i measurements and will reduce their stated errors.

$$
\Delta b = \frac{2\phi^*}{\lambda P_3 Nd} = \frac{\sigma_p}{\lambda_{th.}} \frac{2\phi^*}{\cosh^{-1} R}
$$

2. The intent is to perform a measurement that can determine the value for σ_p to the uncertainty of 0.1%.

1. The reaction channel for the determining σ_p is dependent on the triplet absorption (σ_1). Where σ_{un} is the unpolarized helium and neutron absorption cross-section. σ_p is the **orce a**
The reaction channel for the determining σ_p is dependent of
Where σ_{un} is the unpolarized helium and neutron absorption
polarized ³He neutron cross section absorption.
 $\sigma_p = (\sigma_{un} - \sigma_1)$ σ_p

mining σ_p is dependent on the triplet absorption (σ

am and neutron absorption cross-section. σ_p is the

on absorption.
 $\sigma_p = (\sigma_{un} - \sigma_1)$

aral percent and limits how well we can determine Δ

$$
\sigma_p = (\sigma_{un} - \sigma_1)
$$

The error on σ_p is on the order of several percent and limits how well we can determine Δb . σ_{un} is known very well (~ 0.1%).

 $\sigma_{\rm p} = \sigma_{\rm p}$ [J=0] + $\sigma_{\rm p}$ [J=1] $\sigma_{\rm p}$ = $\sigma_{\rm un}$ [J=0] is already known ,so we will ALSO determine $\sigma_{\rm p}$ [J=1] for the first time in this work!

Magnetometry

- 1. In muon g-2 and other absolute NMR measurement standards, they use spherical polarized cells to measure the absolute magnetic field from the Larmor precession frequency.
- 2. We do the same thing, but we measure the Larmor frequency shift in a cylindrical cell between the higher and lower Zeeman energies to determine the polarization.
- 3. We had 6 coils fixed across the length of the cell.
- 4. About 5000 FID signals were taken.

