

Analysis of the Complex NMR Lineshape of the Deuteron

Michael McClellan

Department of Physics, University of New Hampshire, Durham, NH 03824

20TH INTERNATIONAL WORKSHOP ON POLARIZED SOURCES, TARGETS, AND POLARIMETRY

SEPT. 22-27 | JEFFERSON LAB, NEWPORT NEWS, VA

Outline

- Background
- Functional form for deuteron NMR lineshape
- Complex NMR signals
- Scaling complications
- Enhancement techniques
- Future plans

Background

- Solid Polarized Target Group at UNH
 - developing dynamically polarized target
 - measure spin-structure & tensor spin observables
 - A_{ZZ} , T_{20} and b_1

E. Long et al., C-12-15-005 PAC 44 (2016)

Proton Signals

- Spin polarized protons: low T, high B → energy gap between spin states → uneven distribution
 - Thermal equilibrium (TE) signal can be enhanced
 - Detectable through nuclear magnetic resonance (NMR)
 - Area under curve \rightarrow % vector polarization (P)

09/24/24

Deuteron Signals

- Deuteron signal (with quadrupole splitting) more complex:
 - One curve for $-1 \rightarrow 0$, another for $0 \rightarrow +1$ sum gives P, difference gives Q
 - Curves span quadrupole angle distrubtion, 0-90° (up to 180° doubles back)
- Ideally, NMR signal would be compared to TE signal and scaled
 - TE integral is physical quantity dictated by B, T
 - At 5T & 1K: P for deuteron ~ 0.08% on level of noise for our lab

Simulating Spin Flips

- Macro that directly simulates spin flips for a given polarization
- Can use to explore new avenues for increasing Q

Plots from code by Elena Long, drawing on: M. H. Cohen et al., Solid State Physics 5, 321 (1957)

NMR Analysis

$$R, A, \eta, \phi$$
 \swarrow compacting variables

$$Y = \sqrt{3 - \eta \cos(2\phi)} \qquad \qquad R = \frac{\omega - \omega_d}{3\omega_q}$$

$$\rho^2 = \sqrt{A^2 + [1 - \epsilon R - \eta \cos(2\phi)]^2} \qquad \qquad -3 \le R \le 3$$

$$\cos(\alpha) = \frac{1 - \epsilon R - \eta \cos(2\phi)}{\rho^2}$$

$$f_{\epsilon}(R, A, \eta, \phi) = \frac{1}{2\pi\rho} \{ 2\cos(\frac{\alpha}{2}) \left[\arctan\left(\frac{Y^2 - \rho^2}{2Y\rho sin(\frac{\alpha}{2})}\right) + \frac{\pi}{2} \right]$$
$$\epsilon = \pm 1 \qquad + \sin(\frac{\alpha}{2}) ln\left(\frac{Y^2 + \rho^2 + 2Y\rho cos(\frac{\alpha}{2})}{Y^2 + \rho^2 - 2Y\rho cos(\frac{\alpha}{2})}\right) \}$$

$$F_{\epsilon} \approx \frac{1}{J+1} \sum_{j=0}^{J} \frac{\sqrt{3}f_{\epsilon}(R, A, \eta, \phi_j)}{\sqrt{3 - \eta \cos(2\phi_j)}}$$

positive & negative spin flips 🗸

$$\chi''(r,R) \propto \frac{1}{\omega_q} \left\{ \left[\frac{r^2 - r^{1-3\theta R}}{r^{1-\theta R}} \right] F_+(R) + \left[\frac{r^{1+3\theta R} - 1}{r^{1+\theta R}} \right] F_-(R) \right\}$$
$$\theta = \omega_-/\omega_-$$

- Without reliable TE, curve fit NMR lineshape to known formula from Dulya, et al.
- At high P, physical parameters can be extracted B, T not required!
- With parameters, curve fit for *r* across timespan for data taking
 - Naively, ratio of peak heights of signal
 - Instead of <u>area method</u>, *r* is used for <u>ratio</u> <u>method</u> to find both P and Q

$$\mathcal{P} = \frac{r^2 - 1}{r^2 + r + 1}$$
 or $\mathcal{Q} = \frac{r^2 - 2r + 1}{r^2 + r + 1}$

In materials with different bonds to deuterium (e.g. butanol – C and O bonds), set of curves for each bond type

C. Dulya et al., Nuclear Instruments and Methods in Physics Research A 398 (1997)

NMR Analysis R, A, η, ϕ compacting variables $Y = \sqrt{3 - \eta \cos(2\phi)}$ $R = \frac{\omega - \omega_d}{3\omega_a}$ $\rho^2 = \sqrt{A^2 + [1 - \epsilon R - \eta \cos(2\phi)]^2}$ $-3 \le R \le 3$ $\cos(\alpha) = \frac{1 - \epsilon R - \eta \cos(2\phi)}{\rho^2}$ Complete Fit Negative Spin Flips 80 Positive Spin Flips functional form of signal $f_{\epsilon}(R, A, \eta, \phi) = \frac{1}{2\pi\rho} \left\{ 2\cos(\frac{\alpha}{2}) \left[\arctan\left(\frac{Y^2 - \rho^2}{2Y\rho\sin(\frac{\alpha}{2})}\right) + \frac{\pi}{2} \right] \right\}$ 60 Signal (a.u.) $+\sin(\frac{\alpha}{2})ln\left(\frac{Y^2+\rho^2+2Y\rho cos(\frac{\alpha}{2})}{Y^2+\rho^2-2Y\rho cos(\frac{\alpha}{2})}\right)\}$ 40 **F**₊₁ phi average 🞝 20 $F_{\epsilon} \approx \frac{1}{J+1} \sum_{i=0}^{J} \frac{\sqrt{3} f_{\epsilon}(R, A, \eta, \phi_j)}{\sqrt{3 - \eta \cos(2\phi_j)}}$ 0 positive & negative spin flips -3 -2 $^{-1}$ 1 2 0 3 R $\chi''(r,R) \propto \frac{1}{\omega_{\sigma}} \left\{ \left[\frac{r^2 - r^{1-3\theta R}}{r^{1-\theta R}} \right] F_{+}(R) + \left[\frac{r^{1+3\theta R} - 1}{r^{1+\theta R}} \right] F_{-}(R) \right\}$ $\theta = \omega_q / \omega_d$

C. Dulya et al., Nuclear Instruments and Methods in Physics Research A 398 (1997) 09/24/24 Analysis of the Complex NMR Lineshape of the Deuteron

Data Analysis

- Passing deuteron signal data through curve fitting routine based on Dulya yields good fit
 - Component spin-flip curves can be reconstructed from curve fitting parameters
 - Can perform both area and ratio methods!
- Passing simulated data through routine extracts P that agrees with input!

9

Real & Imaginary Analysis

- Issue with Dulya "false asymmetry" seems artificial why not just fit both real and imaginary parts of signal?
- Two different parts to signal absorptive and dispersive rotate between through phase angle
 - Real = $\chi'' \cos\theta \chi' \sin\theta$
 - Imag. = $\chi'' \sin\theta + \chi' \cos\theta$
- Changes for dispersive: functional form of signal

$$\begin{split} f_{\epsilon}(R,A,\eta,\phi) &= \frac{1}{2\pi\rho} \{ 2 \sin(\frac{\alpha}{2}) \left[\arctan\left(\frac{Y^2 - \rho^2}{2Y\rho sin(\frac{\alpha}{2})}\right) + \frac{\pi}{2} \right] \\ &\epsilon = \pm 1 \\ &+ \cos(\frac{\alpha}{2}) ln\left(\frac{Y^2 + \rho^2 + 2Y\rho cos(\frac{\alpha}{2})}{Y^2 + \rho^2 - 2Y\rho cos(\frac{\alpha}{2})}\right) \} \end{split}$$

$$F_{\epsilon} \approx \frac{\mathbf{E}}{J+1} \sum_{j=0}^{J} \frac{\sqrt{3}f_{\epsilon}(R, A, \eta, \phi_j)}{\sqrt{3 - \eta cos(2\phi_j)}}$$

Real & Imaginary Analysis

 Preliminary agreement between P and Q taken from real and imaginary signals!

Fully Imaginary Analysis

Ran full spin-up curve entirely in the imaginary (88.5° phase!)

• Peaked at P = 37%, Q = 10.5%

Why Imaginary?

Complex is more accurate – tuning is difficult!

Real area \propto P, simulations suggest Imaginary area \propto Q

Very first purely imaginary spin-up!

Keeping Accuracy at High P

Dulya function is missing a final outer parameter: Ξ , which varies with P, more noticeably at high P

Seems to be quartic-ly dependent on r – more analysis needed

E assumed constant:

Ξ allowed to float:

Quartic Relationship: E v P

 $\Xi \propto -0.38 P^4 - 0.61 P^2 + 1$

Increasing Q

- Increasing P via mm-wave enhancement naturally gives Q
- To increase further, can use hole-burning: separate solenoid fires at specific frequency to drive spin flips increase area difference
 - Lose some P but for A_{zz}, Q is more important
- System built & signal found by Nathaly Santiesteban/David Ruth!

Increasing Q

- Solid ND₃ crystal instead of sine distribution of quadrupole angles (powder pattern), only 3 possible angles
- SUPER preliminary simulations only, no tests so far

Future Goals

- Reach Q of ~30% in deuterated ammonia
 - Continue with hole-burning
 - Use EPR to focus mm-wave frequencies
- Add hole-burning to curve-fitting method in progress!
- Confirm relationship between Q and Imaginary area
- Refine functional form of Ξ , find physical cause for it

Acknowledgments

UNH DNP PIs:

•

- Elena Long
- Nathaly Santiesteban
- Karl Slifer
- UNH DNP collaborators:
 - Anchit Arora
 - Hector Chinchay
 - Muhammad Farooq
 - Chhetra Lama
 - Olaiya Olokunboyo
 - Eli Phippard
 - David Ruth
 - Zoe Wolters
 - Allison Zec
- This work is supported by the Dept. of Energy Grant DE-FG02-88ER40410.

Deuteron-Electron Energy Levels

