A Target Insert Design for the UNH Solid Polarized Target Lab

Allison J. Zec (she/her)

Univ. of New Hampshire

2024-09-24

Deuteron DNP

- Deuterated chemically-doped/irradiated materials (alcohols primarily)
- 5 T magnetic field, 1 K temperature, 140 GHz microwaves
- Proton lineshape from $-1/2 \leftrightarrow 1/2$ transition
- Deuteron lineshape has $-1 \leftrightarrow 0$ and $0 \leftrightarrow 1$ components
 - But NMR only gives the sum of the two
- Signal shape affected by material properties and magnetic field angle

Above: Simulated deuteron lineshape showing the contributions from both the $-1 \rightarrow 0$ transition and the $0 \rightarrow 1$ transition. Simulation courtest of E. Long and M. McClellan.

Deuteron DNP

- Deuterated chemically-doped/irradiated materials (alcohols primarily)
- 5 T magnetic field, 1 K temperature, 140 GHz microwaves
- Proton lineshape from $-1/2 \leftrightarrow 1/2$ transition
- Deuteron lineshape has $-1 \leftrightarrow 0$ and $0 \leftrightarrow 1$ components
 - But NMR only gives the sum of the two
- Signal shape affected by material properties and magnetic field angle

Above: Simulated deuteron lineshape showing the contributions from both the $-1 \rightarrow 0$ transition and the $0 \rightarrow 1$ transition. Simulation courtest of E. Long and M. McClellan.

UNH Polarized Target Lab

The UNH polarized target group is hard at work!

Allison J. Zec (she/her)

A Target Insert Design for the UNH Solid Polarized Target Lab

2024-09-24 3 / 13

UNH Polarized Target Lab

The UNH polarized target group is hard at work!

Allison J. Zec (she/her)

A Target Insert Design for the UNH Solid Polarized Target Lab

UNH Polarized Target Lab

The UNH polarized target group is hard at work!

Allison J. Zec (she/her)

A Target Insert Design for the UNH Solid Polarized Target Lab

2022 Target Stick

- Designed 2021-2022, assembled in spring 2022
- 3D printed target ladder using FormLabs "durable" resin
- One target cup, plus ss-RF and EPR capability
- Hand-wound RF-coils
- Includes both Temati CCS and Lake Shore Cernox thermometry
- Used in all UNH cooldowns from 2022 until now

Above left: Top of the 2022 target stick looking down towards the target ladder. Picture shows the 2022 top plate design. Above right: 2022 target ladder design with target cup, waveguide, and RF coils labeled.

2024 Target Stick

- Designed 2023-2024, still in final stages of assembly
- Ladder also of durable resin
- Also ss-RF and (future) EPR capability
- Mold-wound NMR coils, hand-wound ss-RF and EPR
- Cernox thermometry only
- Goal: to complete and test this target stick for cooldowns later next month.

Above: Partially assembled target ladder prototype with the 2024 design. ss-RF coil is not pictured but is wound on the outside of the target cup.

Target Cup Comparison

2022 Design

2024 Design

- ID: 20 mm, length: 10 mm
- Target cup fixed in ladder
- NMR coil outside cup
- Loose cup cap (material only in capsules)

- ID: 15 mm, length 16 mm
- Target cup removeable and replaceable
- NMR coil inside cup
- Tight cup cap (can have lose material)

Allison J. Zec (she/her)

A Target Insert Design for the UNH Solid Polarized Target Lab

2024-09-24 6 / 13

Microwave Transmission: PEEK vs. Durable

- PCTFE (Kel-F) is best plastic for target ladders, but difficult to acquire right now
- Durable resin or PEEK plastic, which transmited microwaves better?
- 0.5 mm-thick durable film: 35-40% loss at 140 GHz
- 0.5 mm-thick PEEK film: 20-25% loss at 140 GHz
- 2022 design used only durable resin, 2024 design will be first to use PEEK film

Top right: Microwave power test. Bottom left: PEEK film. Bottom right: Durable pseudo-film.

NMR Coil Winding

2024 SHIF COL UNIT

Above: 2022 and 2024 target ladder comparison with ss-RF and EPR coils labeled.

2022 Design:

- All RF coils (NMR, ss-RF, EPR) wound by hand
- NMR, ss-RF, EPR coils all on perpindicular axes
- Helmholtz ss-RF, EPR coils

2024 Design:

- NMR coils wound on 3D-printed mold of PVA.
 - PVA is water-soluble, can dissolve to release uniform wound coil
- NMR and ss-RF coils coaxial, EPR solenoid along field direction
- Solenoidal ss-RF, EPR coils

Left: NMR coil wound around PVA mold. Right: Coil and mold submerged in water, to dissolve the mold away.

Allison J. Zec (she/her)

A Target Insert Design for the UNH Solid Polarized Target Lab

2024-09-24 8 / 13

NMR Coil Winding

Above: 2022 and 2024 target ladder comparison with ss-RF and EPR coils labeled.

2022 Design:

- All RF coils (NMR, ss-RF, EPR) wound by hand
- NMR, ss-RF, EPR coils all on perpindicular axes
- Helmholtz ss-RF, EPR coils

2024 Design:

- NMR coils wound on 3D-printed mold of PVA.
 - PVA is water-soluble, can dissolve to release uniform wound coil
- NMR and ss-RF coils coaxial, EPR solenoid along field direction
- Solenoidal ss-RF, EPR coils

Left: NMR coil wound around PVA mold. Right: Coil and mold submerged in water, to dissolve the mold away.

Allison J. Zec (she/her)

A Target Insert Design for the UNH Solid Polarized Target Lab

2024-09-24 8 / 13

NMR Coil Winding

Above: 2022 and 2024 target ladder comparison with ss-RF and EPR coils labeled.

2022 Design:

- All RF coils (NMR, ss-RF, EPR) wound by hand
- NMR, ss-RF, EPR coils all on perpindicular axes
- Helmholtz ss-RF, EPR coils

2024 Design:

- NMR coils wound on 3D-printed mold of PVA.
 - PVA is water-soluble, can dissolve to release uniform wound coil
- NMR and ss-RF coils coaxial, EPR solenoid along field direction
- Solenoidal ss-RF, EPR coils

Non-Uniform Coils: J.Mag.Res. 50, 281 (1982) 3D Printed Coil Molds:

J. Mag. Res. 305, **89** (2019)

Left: NMR coil wound around PVA mold. Right: Coil and mold submerged in water, to dissolve the mold away.

Allison J. Zec (she/her)

A Target Insert Design for the UNH Solid Polarized Target Lab

2024-09-24 8 / 13

Waveguide & Vacuum Seal

2022

- Waveguide acts as external vacuum seal
- "Piston" on cryostat to run multiple target cells
- 2022 cooldown struggled with vacuum problems

2024

- Waveguide entirely internal to stick
- No piston, new top plate with flanges installed
- Vacuum problems were MUCH less impactful

2022 target was also updated with 2024 top plate design!

NEW Helium Reliquefaction System

Left: group photo of the reliquefier installation team. Above: Reliquifier system software overview. **Right:** Chhetra adds LN2 to our helium purifier dewar.

Allison J. Zec (she/her)

NEW Helium Reliquefaction System

Left: group photo of the reliquefier installation team. Above: Reliquifier system software overview. **Right:** Chhetra adds LN2 to our helium purifier dewar.

Allison J. Zec (she/her)

Tensor Polarization at UNH

- Fit with Dulya procedure closely matches data from recent UNH cooldown
 - C. Dulya et al, NIM A 398 (1997) 109-125
- Fit method works very well for UNH data!
- Reliquefier vastly increases cooldown capacity.
 - Two UNH cooldowns in September 2024 alone!
- Highest UNH deuteron polarization observed just last week!

P: 43-47% Q: 14-19%

at UNH on irradiated

d-butanol. courtesy of

Tensor Polarization at UNH

- Fit with Dulya procedure closely matches data from recent UNH cooldown
 - C. Dulya et al, NIM A 398 (1997) 109-125
- Fit method works very well for UNH data!
- Reliquefier vastly increases cooldown capacity.
 - Two UNH cooldowns in September 2024 alone!
- Highest UNH deuteron polarization observed just last week!

Summary

Professors

Elena Long

Karl Slifer

Allison Zec

Nathaly Santiestehan

Postdocs

David Ruth

Eli Phippard

Hector Chinchay

Thank you to the UNH PolTarg Group and our collaborators at UVA!

Graduate Students

Michael McClellan Anchit Arora Chhetra Lama

Muhammad Faroog

Olaiva Olokunbovo

• UNH PolTarg is polarizing again!!!

- Recent data shows >40%vector polarization on irradiated d-butanol
- New target stick with usability & RF-coil improvements
- Improved microwave transmission
- New reliquefier vastly increases UNH's cooldown capacity!
 - We have irradiated ND₃, will run with it soonl

2024-09-24 12 / 13

Zoe Wolters

Trans & Nonbinary Physicists

The Trans and Nonbinary Physicists Discord server is an online community for transgender and nonbinary physicists — from enthusiasts to professors! — to socialize, network, and support one another. All are welcome, and so far we have over 200 members from across the world!

Trans & Nonbinary Physicists

The Trans and Nonbinary Physicists Discord server is an online community for transgender and nonbinary physicists — from enthusiasts to professors! — to socialize, network, and support one another. All are welcome, and so far we have over 200 members from across the world!

Questions, comments, concerns, observations?

Backup Slides

What Deuterons Do That Protons Don't

Tensor Polarization Properties

Then...

 $0 < P_{zz} \leq 1$

 $P_{zz} = 0$

 $-2 \le P_{zz} < 0$

- P_z ranges from -1 to +1
- P_{zz} ranges from -2 to +1
- In deuterons both P_z and P_{zz} can be nonzero simultaneously

Tensor Polarization Properties

b₁ Experiment

- Intended to improve upon HERMES' 2005 data
- Verifications of zero-crossing
 - Implications for Close-Kumano sum rule
- Tensor physics at quark level
- Better understanding of b₁ allows discrimination of different deuteron components by spin (e.g., quarks vs gluons)

Approved by JLab with Aphysics rating!

E12-13-011

The Deuteron Tensor Structure Function b_1

K. Slifer *et al*, JLab C12-13-011 **Spokespersons:** K. Slifer, O.R. Aramayo, J.P. Chen, N. Kalantrians, D. Keller, E. Long, P.

Saluignan

Azz Experiment

- First-of-its-kind quasielastic Azz measurement
- Implications for SRC physics and deuteron wavefunction
- Widest range of x covered by a single measurement
- Measurement of T₂₀ included!

Spokespersons: E. Long, K. Slifer, P. Solvignon, D. Day, D. Keller, D. Higinbotham

Approved by JLab with Aphysics rating!

E12-15-005

Quasi-Elastic and Elastic Deuteron Tensor Asymmetries

E. Long et al, JLab C12-15-005

BACKUP: DNP

Dynamic Nuclear Polarization (DNP)

- Using µwaves, drive spin transitions of unpaired electrons
- Electrons transfer spin to nuclei
- Nuclear absorption spectrum gives polarimetry info

Above: Characteristic lineshape

of the proton

C.D. Keith et al, NIM A 501

(2003)

Allison J. Zec (she/her)

Above: Diagram of the energy level transitions in the DNP process. Adapted from Annu. Rev. Nucl. Part. Sci. 1997. 47:67-109

ND₃ and Other Target Materials

C. Dulya, et al, NIM A 398 (1997)

- Both *b*₁ and *A*_{zz} experiments call for solid ND₃ targets
- Polarization also done with frozen chemically-doped deuterated alcohols
- Lineshape affected by quadrupole splitting of molecule
 - $\bullet~$ Different for ND_3 vs butanol

 $\mathit{Left:}$ C-D, O-D bond contribution to the deuteron NMR lineshape in d-butanol

ND ₃ ND ₂ d-ammonia Irradiation	
	\sim 30%
C4D9OD TEMPO d-butanol Chemical	23.7%

D. Crabb, W. Meyer, Annu. Rev. Nucl. Part. Sci 47 67-109 (1997)

Allison J. Zec (she/her)

BACKUP: Tensor Polarization Analysis

NMR Curve Fitting

- Fit NMR lineshape with procedure from C. Dulya *et al*, NIM A **398** (1997) 109-125
- Includes effects from molecular bond quadrupole terms
- Can naively use peak height ratio r to estimate polarization

$$P_{z} = \frac{r^{2} - 1}{r + r^{2} + 1}$$

$$P_{zz} = \frac{r^{2} - 2r + 1}{r^{2} + r + 1}$$
(1)

• Then compare *ratio* and *area* methods for *P*_{zz} measurement consistency

Right: Parts of the curve fitting method suggested by C. Dulya *et al.*

$$R, A, \eta, \phi \xrightarrow{\text{compacting}} \text{variables}$$

$$\begin{split} \rho^2 &= \sqrt{A^2 + [1 - \epsilon R - \eta cos(2\phi)]^2} & R = \frac{\omega - \omega_d}{3\omega_q} \\ cos(\alpha) &= \frac{1 - \epsilon R - \eta cos(2\phi)}{\rho^2} & -3 \leq R \leq 3 \end{split}$$

functional form of signal
$$\begin{split} f_{\epsilon}(R,A,\eta,\phi) &= \frac{1}{2\pi\rho} \{ 2cos(\frac{\alpha}{2}) \left[\arctan\left(\frac{Y^2 - \rho^2}{2Y\rho sin(\frac{\alpha}{2})}\right) + \frac{\pi}{2} \right] \\ & \epsilon = \pm 1 \\ & + sin(\frac{\alpha}{2}) ln\left(\frac{Y^2 + \rho^2 + 2Y\rho cos(\frac{\alpha}{2})}{Y^2 + \rho^2 - 2Y\rho cos(\frac{\alpha}{2})} \right) \} \end{split}$$
phi average 🞝 $F_{\epsilon} \approx \frac{1}{J+1} \sum_{i=0}^{J} \frac{\sqrt{3}f_{\epsilon}(R, A, \eta, \phi_j)}{\sqrt{3 - n\cos(2\phi_i)}}$ positive & negative spin flips $\chi''(r,R) \propto \frac{1}{\omega_q} \left\{ \left[\frac{r^2 - r^{1-3\theta R}}{r^{1-\theta R}} \right] F_+(R) + \left[\frac{r^{1+3\theta R} - 1}{r^{1+\theta R}} \right] F_-(R) \right\}$ $\theta = \omega_a / \omega_d$

Thermal Equilibrium & Enhancement

Deuteron thermal equilibrium (TE) polarization before microwave irradiation:

$$P(1) = \frac{4 \tanh\left(\frac{g_i \mu_i B}{2k_B T}\right)}{3 + \tanh^2\left(\frac{g_i \mu_i B}{2k_B T}\right)} \qquad (2$$

Only 0.1% polarization at 5 T and 1 K.

TE signal can be used for calibration if detected. Signal is then enhanced with microwaves.

Above: Deuteron TE signal from CLAS target. From C. Keith *et al*, NIM A **501** (2003). *Right*: Polarization curve during enhancement.

Real & Imaginary Fits

- Can now manually set NMR phase angle ϕ during cooldowns
- Fit using a rotation of the absorptive (χ") and dispersive (χ') around phase angle:

 $\begin{aligned} \text{Real} &= \chi'' \cos \phi - \chi' \sin \phi \\ \text{Imag} &= \chi'' \sin \phi + \chi' \cos \phi \end{aligned} \tag{3}$

- Can fit a simultaneous mixture of real and imaginary
- First fits with the new method match data well, look very promising!

Above: Fit of recent cooldown data using real and imaginary parts. Fit is compared with an "imaginary only" signal and then fitted for a phase mistune.