

Crab cavity effect on beam polarization in EIC

Michael Blaskiewicz, Vadim Ptitsyn, Vera Shmakova Brookhaven National Laboratory

September 23, 2024

EIC

 Future unique machine with highly polarized proton and electron beams, will investigate spin and flavor structure of nucleon and nuclei, test QCD predictions

- Polarized light ions and electron beams
- Goal polarization for proton, ³He and electrons is 70%
- Longitudinal polarization in IP

RF crab cavity

• At IP beams intersect at the crossing angle of 25 mrad. To restore the luminosity the bunches will be rotated by half interaction angle.

• Two RF crab cavities will be used in each electron and proton rings

Spin rotators

- 6 Siberian snakes in HSR and 4 in ESR will be used to overcome spin resonances during acceleration
- 6 Snakes separated with 60° bending angle
- Produces 180° rotation around horizontal axis
- Two spin rotators in each ring to rotated polarization in longitudinal position:
 - Helical dipole magnets in HSR
 - Solenoidal magnets in ESR

Crab cavity influence on the bunch

- Phase advance between crab cavity and IP is close but not exactly 90°
- Head and tail of the bunch are out of the nominal orbit

 That means spins of head/tail particles are getting horizontal kick, which potentially can lead to polarization spreading and decreasing longitudinal spin component

How large is this effect?

Orbit kick of the crab cavity and a corresponding spin kick

Thomas-BMT equation:

$$\begin{aligned} \frac{d\vec{S}}{dt} &= \vec{\Omega} \times \vec{S} \\ \vec{\Omega} &= -q[G + \frac{1}{\gamma}\vec{B} - \frac{G\gamma}{\gamma - 1}(\vec{\beta} \cdot \vec{B})\vec{\beta} - (G + \frac{1}{\gamma - 1})(\vec{\beta} \times \vec{E})] \\ \gamma &\gg 1 \qquad B \| \neq 0 \\ \vec{\Omega} &= -qG[\vec{B} - (\vec{\beta} \times \vec{E})] \\ \dot{\alpha} &= |\Omega| = qG[B + E] \end{aligned}$$

$$\dot{\alpha} = \gamma G \dot{\theta}$$

Lorentz force equation:

$$\frac{d\vec{\beta}}{dt} = \frac{q}{\mathcal{Y}} (\vec{E} - \vec{\beta} \times \vec{B})$$
$$\frac{d\vec{\beta}}{dt} = \vec{W} \times \vec{\beta}$$
$$\frac{d\vec{\beta}}{dt} = \frac{q}{\mathcal{Y}} \beta \times (\vec{E} \times \vec{\beta} - \vec{B})$$
$$\vec{W} = \frac{q}{\mathcal{Y}} (\vec{E} \times \vec{\beta} - \vec{B})$$

$$|W| = \frac{q}{\mathcal{Y}} [E + B]$$

 $\dot{\theta} =$

Stable spin axis calculation

Kick of the Crab cavity corresponding to 12.5 mrad bunch tilt

$$\begin{pmatrix} x_{ip} \\ x_{ip} \\ x'_{ip} \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{\beta_{c1}}{\beta_{ip}}}\cos(\mu) + \alpha_{ip}\sin(\mu) & \sqrt{\beta_{c1}\beta_{ip}}\sin(\mu) \\ \frac{-(1 + \alpha_{c1}\alpha_{ip})\sin(\mu) + (\alpha_{c1} - \alpha_{ip})\cos(\mu)}{\sqrt{\beta_{c1}\beta_{ip}}} & \sqrt{\frac{\beta_{ip}}{\beta_{c1}}}(\cos(\mu) - \alpha_{c1}\sin(\mu)) \end{pmatrix} \begin{pmatrix} 0 \\ \theta \end{pmatrix}$$

Stable spin axis calculation

One turn spin rotation matrix:

$$T_{turn} = T_{cc\ 2e-ip} \cdot T_{cc\ 2b-cc\ 2e} \cdot T_{rot\ 2-cc\ 2b} \cdot T_{rot\ 2} \cdot T_{sn\ 6-rot\ 2} \cdot T_{sn\ k-dn} \cdot T_{sn\ 5-sn\ 6} \cdot T_{sn\ k-up} \cdot T_{sn\ 4-sn\ 5} \cdot T_{sn\ k-dn}$$
$$\cdot T_{sn\ 3-sn\ 4} \cdot T_{sn\ k-up} \cdot T_{sn\ 2-sn\ 3} \cdot T_{sn\ k-dn} T_{sn\ 1-sn\ 2} \cdot T_{sn\ k-up} \cdot T_{sn\ 1-rot\ 1} \cdot T_{rot\ 1} \cdot T_{rot\ 1-cc\ 1e} \cdot T_{cc\ 1e-cc\ 1b} T_{cc\ 1b-ip}$$

$$\vec{a} = \frac{1}{2} \sin\left(\frac{\phi}{2}\right) Tr\left(\vec{\sigma} \cdot T_{turn}\right) \qquad \cos\left(\phi/2\right) = \frac{1}{2} Tr\left(T_{turn}\right)$$

Stable spin axis direction on 1 σ :

	as	a _x	a _y
protons 275 GeV	0.99994	0.011	0.0006
protons 100 GeV	0.9999975	0.0022	-0.0001
protons 41 GeV	0.9999995	0.00092	0.0002
electrons 18 GeV	0.999998	0.0015	0.00005

Stable spin axis depending on s in bunch

Average bunch polarization

$$\langle P_b \rangle = \frac{1}{\sqrt{2 \pi} \sigma} \int \cos(ks) e^{-\frac{s^2}{2 \sigma^2}} ds$$

	Bunch polarization reduced by
protons 275 GeV	6e-5
protons 100 GeV	3e-6
protons 41 GeV	4e-7
electrons 18 GeV	4e-6

Tolerance level for phase advance

- Phase advance between the crab cavity and IP is in the order of 5°.
- In case of polarization loss of 1% phase advance is ~25 factor larger

Outlook

• Crab cavities cause the head and tail of a bunch to deviate from the nominal orbit. The impact of this effect on polarization spreading has been investigated.

• Stable spin axises depending on the position in the bunch and bunch polarization loss were calculated.

• Polarization loss due to crab cavity is in the order of 0.01% for protons of 275 GeV, which is negligible.

• The effects of energy variations were not considered yet.