Preparations at JLab for a Spin Polarized Fusion Program The Polarized ⁷LiD Program for Polarized Fusion Experiments at the DIII-D Tokamak

Xiangdong Wei 9/26/2024

PSTP 20TH INTERNATIONAL WORKSHOP ON POLARIZED SOURCES, TARGETS, AND POLARIMETRY

SEPTEMBER 22-27 JEFFERSON LAB NEWPORT NEWS, VA

Motivations

Jefferson Lab

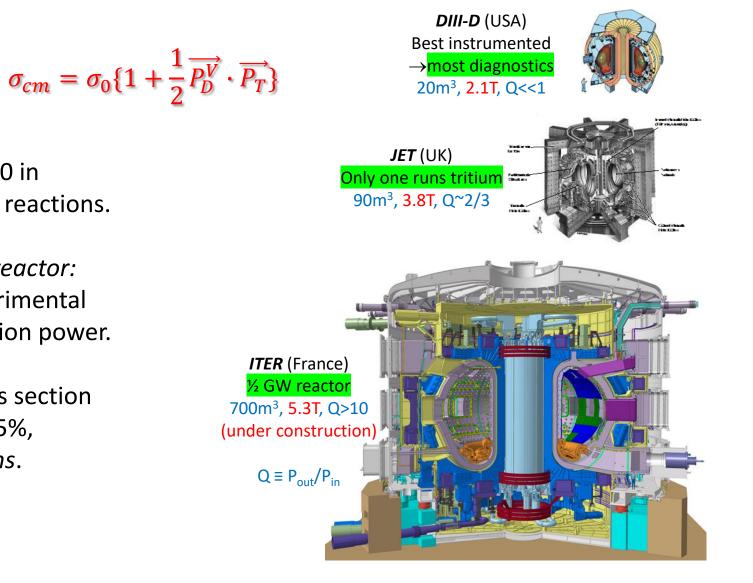
Power!

Clean PowerII

Sustainable Clean Power!!! (with least environmental impact)

Fossil Fuels, Fission, Hydroelectric, Wind Turbine, Solar, Geothermal, Ocean Current, and finally FusionIII **DOE core mission objectives:**

... to promote innovative research in clean energy sources, ...


OAK RIDGE

ICF (inertial), MCF (magnetic)...

- The intended fuel:
 - $D + T \rightarrow \alpha + n$
 - and $D + {}^{3}He \rightarrow lpha + p$
- Most research Tokamaks ever built (~30 in operation today) have focused on D+D reactions.
- Jump in scale towards a fusion power reactor: the International Thermonuclear Experimental Reactor (ITER) will pave the way to fusion power.
- Polarized fuels could enhance the cross section by up to 50%, & the power and Q by 75%, without changing the plasma conditions.
- The cost is ~V_{-plasma} x B².
 ⇒20~40 billion dollars.

Xiangdong Wei 9/26/2024

Channels and Facilities

SPF Collaboration

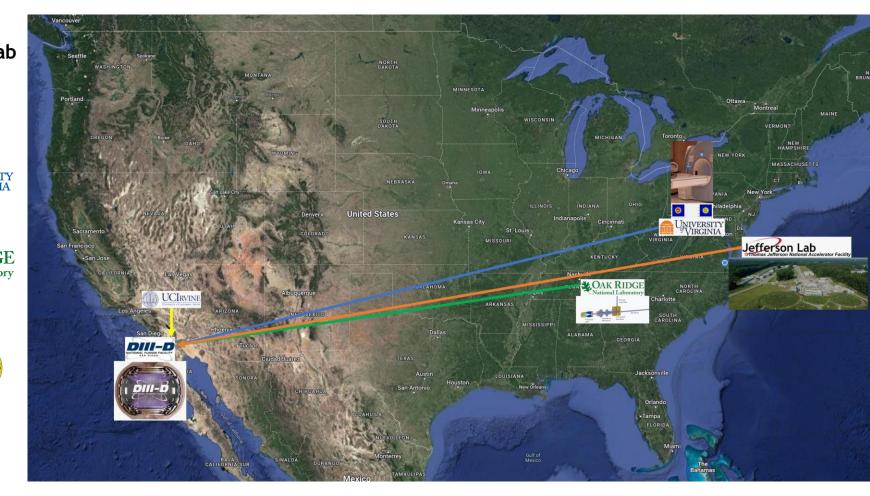
Jefferson Lab

Jefferson Lab

(Polarized D Fuel)

Jefferson Lab

X. Wei, P. Dobrenz, D. Williams,... plus 2 incoming postdocs from UVA

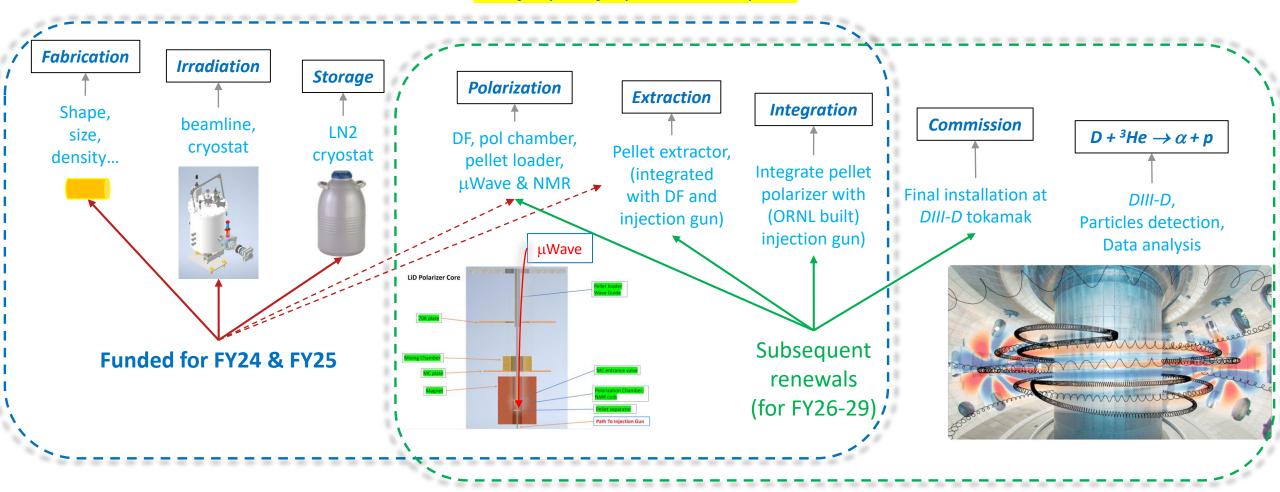

University of Virginia (Polarized ³He Fuel) G. W. Miller, A. M. Sandorfi, X. Zheng,...

Oak Ridge National Lab (Polarized Fuels Delivery) L. Baylor, S. Meitner, ...

CAK RIDGE

University of California, Irvine (Run Preparations and Diagnostics) W. Heidbrink, ...

Ultimate Goal: Run $D + {}^{3}He \rightarrow \alpha + p$ at *DIII-D* in FY28-29


CAK RIDGE

First phase, *Spin Polarized Nuclei for Injection into DIII-D*, has been funded by DOE FES.

4

Polarized D Fuel at JLab

The life cycle of a polarized ⁷LiD pellet

Ultimate Goal:

Running $D + {}^{3}He \rightarrow \alpha + p$ in DIII-D tokamak with polarized fuels to test polarization survivability.

Approach:

- FY24-25 Equipment preparation, Fuel pellet production, ⁷LiD Polarizer designs, Prototype, ...
- FY26-27 Equipment production, System integration, Polarized fuel production, ...
- FY28-29 Commissioning, Running spin-polarized fusion at DIII-D.

JLab's Short Term focus:

- Preparing ⁷LiD pellets.
- Irradiating ⁷LiD pellets with eBeams to create paramagnetic centers for DNP process.
- Preparing μWave and NMR systems for polarization production and monitoring.
- Designing a (commercial dilution refrigerator based) DNP polarizer.
- Building a prototype Polarization Chamber with pellet handling system.

Jefferson Lab

The advantages:

- JLab Target Group operates DNP polarized targets routinely.
- Polarized LiD targets have been used successfully eg. CERN COMPASS exp.
- JLab PAC approved experiments require polarized ⁷LiD targets.

The challenges:

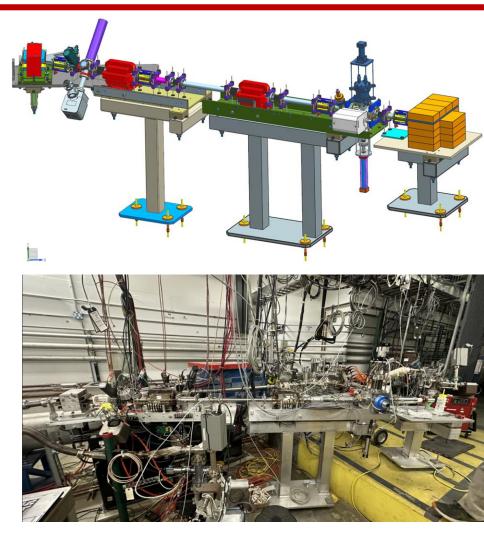
- Precision engineering----Uniform shape and ρ to deliver ~10²⁰ deuterons/pellet.
- Cold transporting----Pellet dispensed into 4K tokamak injector with holding field.
- Impact resistance----Survives ~20m subsonic injection journey.

Requirements for the polarizer--High cooling-power commercial DF with ~7T magnet.

- A pellet manipulation mechanism for loading/dispensing.
- A polarizing chamber with **NMR** coils (V~0.06cc) and **tuned waveguide**.
- Properly anchor components to achieve low operating temp (~100mK with μ Wave ON).
- A 77K entrance interface and a 4K exit interface.

To consistently deliver ~10²⁰ deuterons/shot, the shape, density and edges of the pellet must be well controlled and smoothly fit inside injection gun, for achieving high injection speed.

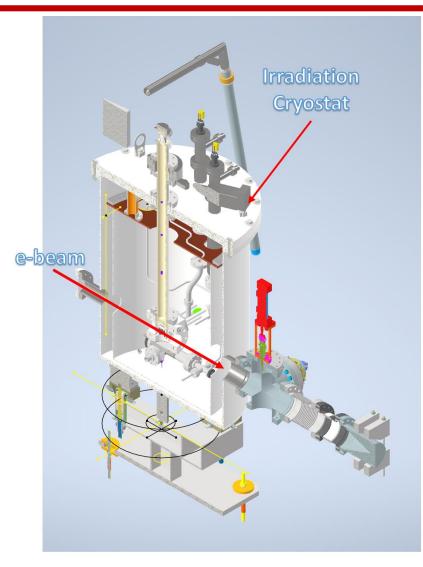
⁷LiD is chemically unstable, and caustic; must be handled in an inert gas environment.


- ⁷LiD pellets can be:
 - 1. fused from powder;
 - 2. casted;
 - 3. machined from a solid chunk;
 - 4. purchased from a vender preferred; discussions in progress
- ⁷LiD Pellet size: cylindrical, ϕ =1.5mm, L=3.0mm.
- Totally ~200 ⁷LiD pellets will be used for developing, testing and running the SPF experiment.

Beamline

- The ⁷LiD pellets must be irradiated with electron beams to create *paramagnetic centers* for the DNP process.
- The pellets will be irradiated at ~185K with ~10µA electron beams (~9MeV) for several hours and stored/transported under 77K.
- CEBAF Injector will be used for the irradiations.
- The irradiation beamline has been built by Injector Group and is currently under vacuum.

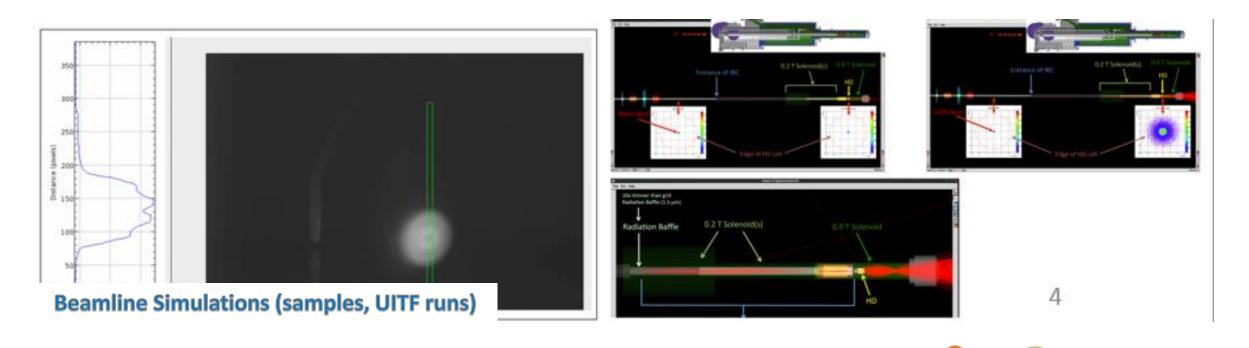
Doping ⁷LiD Pellets



Dosing ⁷LiD Pellets

Irradiation Cryostat

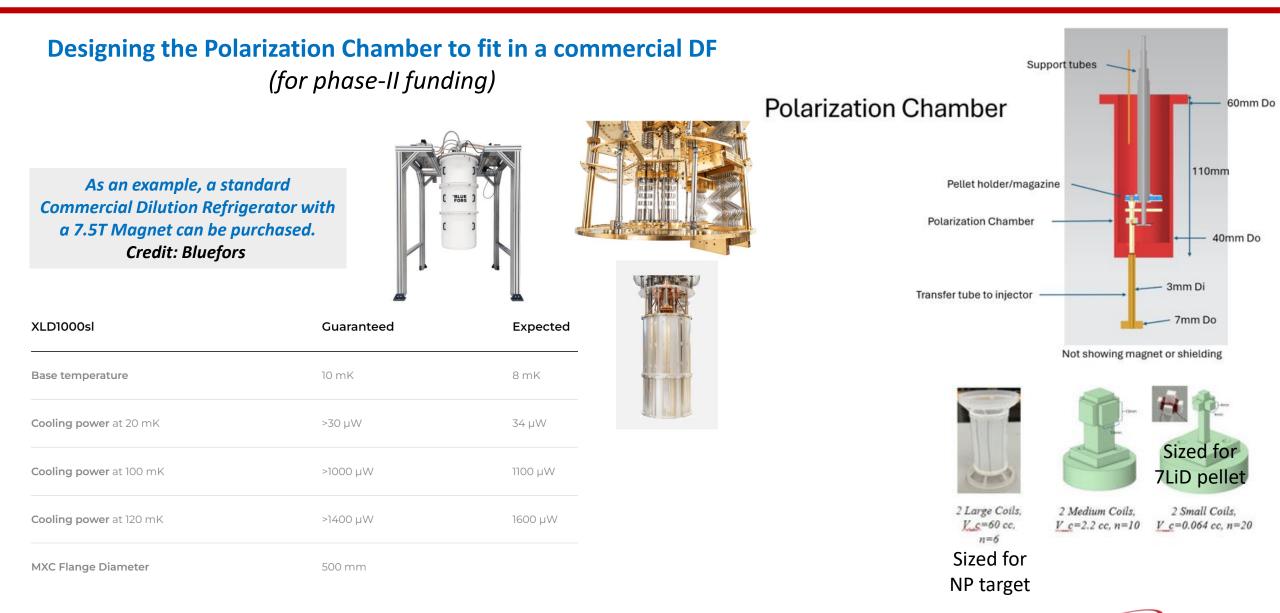
- The ⁷LiD pellets will be irradiated at ~185K with ~10µA electron beams (~9MeV) for several hours to create ~2x10¹⁷ e- /cm² for the DNP process and stored/transported under 77K. (See Kageya's talk tomorrow)
- The Irradiation Cryostat has been designed by the Target Group and the Fusion Group. Together, we will build it in FY25.
- The irradiation results will be validated by measuring achievable polarization with DNP at the onsite Polarized Target Development Lab. (See Brock's talk on Tuesday)



Jefferson Lab

Goals of the Beamline Simulation:

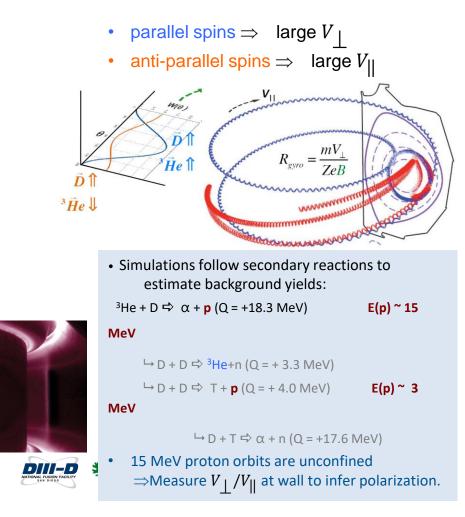
- 1. Guide the beamline commissioning;
- 2. Guide the target material irradiation runs by predicting the missing electrons with the dump current and viewers data.



CAK RIDGE

NIVERSIT

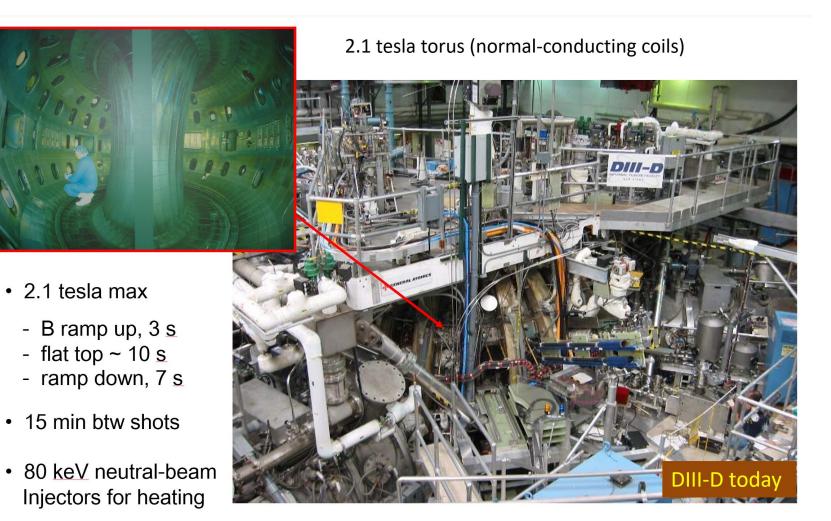
NMR coils & Polarizing Chamber


son Lab

While JLab is preparing the polarized D fuel:

- UVA will build the ³He polarizer.
- ORNL will design/build the cold pellet injection gun with continuous magnetic field.
- UC-I will study fusion product detection and plasma diagnostics.
- All components will be shipped to DIII-D in 2027.

7LiD


4K Injector

77K Injector

Run **D** + ³He --> α + *p* in FY28

Schedule

Jefferson Lab

Ex	Polarized Fusion Kick-Off	he <mark>D + ³He</mark> test w	vithin 5-6 years.	Qtr 1, 2025 Qtr 2, 2025 Jan Feb Mar Apr May	Qtr 3, 2025 Jun Jul Aug Sep 38 4
W	Fusion Lab Setup -LiD Pellet ork at JLab for the	current funding cyc		44%	
6	Contract Negotiation Contract Writing Pellet Production	25 days 15 days	0%		
				tion Cryostat and I	Beamline.
 FY24: Preparing ⁷LiD pellets, designing/Building Irradiation Cryostat and Be FY25: Testing Irradiation Cryostat, Producing Irradiated ⁷LiD pellets. 					
	Irradiation Cryostat Construction	62 days 15 days			
	 Injector Modification 	230 days		69%	
In	subsequent fundin	q cycles: lays		82%	
	Design I Irradiation Beamline Construction	50 days	100%		
		20 days			
	FY26-27: Finishing subsystem constructions and then production test.				
	ERR-Accelerator 20. Svicto	m integration and f	inal assembly	20%	
	Pellet Irradiation-possible		inal assembly.	0%	
	Physics Run FY26	130 days			
	Pellet Irradiation-MUST	12 days			
	Polarizin Polarized D	+ ³ He fusion at D		15%	
		452 days	100%		
	Meetings etc. End of Project	2.5 days			

Xiangdong Wei 9/26/2024

DIII-D

NATIONAL FUSION FACILITY

CAK RIDGE

UNIVERSITY VIRGINIA