Designing Targets with CFD

- Design with CFD
- High/low-power target designs with CFD
- Summary

Silviu Covrig Dusa Jefferson Lab

Polarized Sources, Targets and Polarimetry PSTP-2024 Jefferson Lab, VA 22-27 Sep 2024

CFD Target Design at Jefferson Lab

- Computational Fluid Dynamics (CFD) software has been in use to design low noise, high power targets for an e- beam at Jefferson Lab since 2005
- Qweak: first target designed with CFD at Jefferson Lab: 2.5 kW of beam power on 35 cm long liquid hydrogen (LH2) cell.
- The outstanding performance of the Qweak target established CFD as a baseline design tool for low noise targets at Jefferson Lab
- With a DOE Early Career Award (2012-2017) we stood up a dedicated CFD computational farm at Jefferson Lab with the goal to design targets for the physics program at the Lab and beyond
- Current CFD software in use at Jefferson Lab: ANSYS-CFD (Fluent and CFX), current CFD computational farm capacity: 512 CPUs

What is Target Noise (an example from Parity-Violation measurements)

Target density reduction = luminosity loss

 ΔY Y = $Y_{low\ beam} - Y_{high\ beam}$ Y_{low} beam 10% Y loss \rightarrow 10% longer running

Target density fluctuations = asymmetry width enlargement

$$
A_{exp} = \frac{Y_+ - Y_-}{Y_+ + Y_-} = \frac{\Delta Y}{Y} \qquad \qquad Y_{+/} \sim N/I \qquad \qquad \text{++/- are electron beam}
$$
helicity states

$$
(\Delta A_{exp})^2 = \sigma_{exp}^2 = \sigma_0^2 + \sigma_{noise}^2
$$

10% noise increase \rightarrow 20% longer running

 σ_0 = counting statistics $R =$ scattered particle rate f_h = helicity frequency $\sigma_0^2 =$ 1 N_0 = f_h $2R$

CFD is the most efficient tool for low noise target design

Jetterson Lab

LH2 Targets for Parity Violation

CFD@JLAB: selection of targets

CFD for the Qweak Target

- CFD driven design was used for all Qweak target loop components except the pump
- H_2 release into Hall C was analyzed with CFD to establish keep-out zones around the target chamber
- Steady-state and time-dependent CFD simulations have been developed
- The CFD design process extended over 3 years starting in 2006
- In the absence of CFD the Qweak would have employed an extended G0 target cell
- The Qweak target cell design started with the extended G0-type cell and morphed into a fully transverse flow to the beam line cell used successfully in 3 run periods (2010-2012)

MOLLER Cell Model 21 Flow Space

Son Lab

CFD predictions for the MOLLER Cell

- Beam raster 4x4 mm² (nominal is 5x5 mm 2)
- Beam current 75 μA (max expected 70 μ A)
- Mass flow 1.5 kg/s (max expected 1.8 kg/s)
- T = 20 K (saturates at 23.7 K), $p = 35$ psia
- 2-phase model with nucleate boiling accounted for
- Estimated max luminosity loss 0.9%
- Estimated LH2 noise at 960 Hz less than 15 ppm for pairs PV asymmetry

Natural Convection Cells (low power)

- A1n/d2 40 cm glass cell, UVA/W&M/JLAB design
- CFD assessments: cooling jets for the beam line windows, beam raster frequencies, beam ramp rate, gas internal convection, density loss in beam volume etc.
- Assessed for 30 μ A beam current
- GEn2 60 cm glass cell, UVA/W&M design, high T, high p
- CFD assessments: cooling jets for the beam line windows, beam raster frequencies, beam ramp rate, gas internal convection, density loss in beam volume etc.
- Assessed for 60 μ A beam current
- T2/40Ar 25 cm Al cell, JLAB design (Dave Meekins)
- CFD assessments: cryogenic cell, density loss v. beam current, beam raster effect, beam line windows heating
- Assessed for 25 μ A beam current

Density Loss for 40Ar/T2 Cell

Data from: "Density changes in low pressure gas targets for electron scattering experiments", S. N. Santiesteban et al., NIM A 940, 351-358, 2019

PSTP-2024 CFD target design 10

 0.850

 $\overline{0}$

5

 10

Current (μA)

 15

 20

GEn2: beam raster and cooling jets effects

contour-1

Static Temperature $5.92e + 02$ $5.62e + 02$ $5.33e + 02$

> $5.03e + 02$ $4.74e + 02$ $4.45e + 02$ $4.15e + 02$ $3.86e + 02$ $3.56e + 02$ $3.27e + 0.2$

 $2.98e + 0.2$

• Circular beam raster 5 mm diameter, 320 µm intrinsic beam spot diameter

 $x(t) = R_0 \sqrt{tf_r - [tf_r] \cdot \cos(2\pi f_c t)}$ $y(t) = R_0 \sqrt{tf_r - [tf_r] \cdot \sin(2\pi f_c t)}$

- f_r = 50 Hz, f_c = 7551 Hz (fixed)
- Cooling jet: air, 100 lpm for 2 windows
- Beam current 60 μ A, beam power in one glass window 5 W $[K]$
- Time-dependent simulations

Standard Target Cell with CFD

- 5-600 W, 15 cm cell for the standard targets in Halls A/C for the 12 GeV program
- Predicted LH2 density loss with CFD at 100 μA beam current, 2x2 mm² beam raster and standard LH2 pump at 60 Hz: 1.8%, measured 2.3% (at 50 Hz on the LH2 pump)

(Very) High-power Positron Target Designs

- We are in the process of evaluating with CFD several target concepts, based on our collaborations:
	- -Xelera Research LLC (Ithaca,NY) in collaboration with Jlab is pursuing a liquid metal jet target that could produce e+
	- -SLAC group has a liquid xenon recirculating target concept (NIM-A, **1053**.168329 (2023), Spencer G. et al)
	- -SKEKB group has developed a high power rotating solid target for a pulsed source that we are assessing (Yoshinori E. et al)
	- -We are also assessing a rotating target design different from the SKEKB design
- JLAB-Xelera are collaborating under the DOE SBIR program
- JLAB-SLAC-SKEKB are collaborating under a DOE-SC-HEP grant funding opportunity that supports the development of advanced accelerator technologies (1 year funding in progress, submitted in Dec 2023 for a 3 year grant 2024-2027, approved for 2 years)
- Our goal is to pool resources with our collaborators to help their positron target designs/assessments and along the way design a positron target for the Jefferson Lab physics program too

Ce+BAF General Target Design Parameters

- Design goal: the target should be able to take a 1 mA CW e beam current and have a lifetime of 6 months to 1 year (or longer)
- Tungsten is preferable as a target material: high Z (high e+ yield) and high melting temperature (thermal resilience to high power beam deposition)
- Optimal W target thickness for e⁺ production from an incoming 120 MeV, 1 mA e- beam, would be 4 mm
- Fluka estimates for heating power deposition in such a target are in the range of 17 kW
- Water seems to be the best option for cooling such a target
- CFD simulations seem to indicate that the W target will have to be rotated with a mild frequency (less than 10 Hz) to extend its lifetime (the W disk radius depends somewhat on the rotation frequency)

Positron Solid Target Designs

- Focused on assessing with CFD high-Z targets, mostly W, for e+ production:
	- A static target could take \sim 1 kW beam power before it melts
	- -A linearly moving target could take ~ 4 kW beam power before it melts
	- A rotating target (<10 Hz, >30 cm diameter) could take 20 kW beam power with T_{max} < 1000 K

Ce+BAF Rotating W Target with CFD

- Beam area on W target 4x4 mm² or Gaussian profile with $\sigma \sim 1$ -3 mm
- The beam hits the W target on a circle with radius 18 cm
- The W target rotates at 2 Hz and the water flow is 0.6 kg/s, water pressure loss is 1.5 psi
- Full time-dependent CFD simulations implemented
- No studies on target material lifetime
- Started looking at the target engineering, radiological issues, shielding

'son Lab

- 20 years of experience in target design with CFD at Jefferson Lab
- Covered all aspects of a fixed target (polarized and unpolarized) design process
- Collaborating with Xelera Inc, SLAC and SKEKB on positron target design and prototyping
- Working on developing a feasible design for the e+ source at LERF@JLab within 3-5 years

