High polarization InAlGaAs/AlGaAs photocathodes grown using MBE

PSTP 2024

20th International Workshop on Polarized Sources, Targets and Polarimetry

Marcy Stutzman, Jefferson Lab Chris Palmstrøm, Aaron Engel, Yu Wu, UCSB Greg Blume, Old Dominion University

Spin Polarized Photoemission from Bulk GaAs

 σ - : Left circularly polarized light

- → Laser excitation from $P_{3/2}$ to $S_{1/2}$: $E_{gap} < E_{\gamma} < E_{gap} + \Delta$
- Electron Polarization: $P_e < \frac{3-1}{3+1} = 50\%$
- Reverse electron polarization by reversing light polarization

Ε

How does spin selectivity arise in III-Vs?

- Circularly polarized light couples to electron angular momentum
- Degeneracy limits the theoretical maximum spin polarization
- <u>Confinement and strain break heavy hole/light hole degeneracy</u>

Spin Crisis: Efforts to restore high polarization restore supply

- DOE Funding Opportunity 20-2310
 - MOCVD (metal organic chemical vapor deposition)
 - ODU/BNL/JLab
 - CBE (Chemical Beam Epitaxy)
 - JLab/UCSB

OLD DOMINION

U N I V E R S I T Y

Photocathode Growth at UCSB

U California Santa Barbara

Semiconductor Deposition System

- CBE and MBE growth
- Collaborators for growing GaAs/GaAsP SSL

Figure 2 Semiconductor deposition system at Chris Palmstrom's lab at UCSB. The CBE system for the growth of this material is shown at the back and labelled "VG V80H III-V CBE".

Original Research Plan

- 1. Grow GaAs/GaAsP: UCSB CBE instead of MBE
- 2. Measure Polarization: JLab
- 3. Use Photocathodes!

Obstacles -> Innovation

UCSB Highlights: Graded layer GaAs to GaAsP

Marcy Stutzman PSTP 2024

- Graded layer: slow, \$\$, defects
- Triethyl-gallium + P: high vapor pressure residue
 - Return to solid source Ga
 - CBE becomes MBE
- Rebuild system, recalibrate growth
 parameters with new heaters & sources
- Meanwhile Literature Review
 - Try InAlGaAs/AlGaAs
 - Lattice matched barrier no graded layer
 - No phosphorus!
 - Literature showed high polarization
 - DBR elements subset of superlattice
 - Easy to As cap

[1] L. G. Gerchikov, et al. Semiconductors 40, 1326-1332 (2006)

- Strain and valence band offset coupled: both fixed by virtual substrate
- Phosphorus & MBE: Technical challenges
- Growth temperatures: Dissimilar
- DBR adds additional elements

- Strain and valence band offset independent
- InAlGaAs & MBE: Common
- Growth temperatures: Similar
- Easily tunable DBRs in AIAs/AIGaAs system
- Best Polarization ≥ GaAs/GaAsP
- Should be possible to get commercial vendor once optimized
- As capping straightforward

[1] L. G. Gerchikov, et al. Semiconductors 40, 1326–1332 (2006)

- Strain and valence band offset independent: **Higher strain**
- InAlGaAs & MBE: Common
- Growth temperatures: Optimize
- Easily tunable DBRs in AlAs/AlGaAs system
- Best Polarization ≥ GaAs/GaAsP
 - Try Digital alloying to reduce depolarization

First Growth & Activation InAlGaAs/AlGaAs SSL

Max Polarization > 82.5% Max QE at max: 0.34%

Parametric Studies: Growth Temperature

Lower Growth Temperature =

- Higher Polarization
- Higher QE
- * Activations
- before and after polarimeter repair
- different heat cycle
- Heat cycles typically
 370°C in vacuum
- First sample ~450°C

Parametric Studies: Strain

Marcy Stutzman PSTP 2024

Higher Strain =

- Higher Polarization
- Orange data
 - P = 90 ± 1%
 - 0.33% QE at 755 nm
- Red data
 - $P = 88 \pm 4\%$
 - 0.95% QE at 775 nm

Spicer 3 step model

- 1. Excitation
- 2. Transport
- 3. Emission

Transport Depolarization mechanisms

- Spin orbit coupling (EY)
- Spin state splitting (DP)
- Electron/hole exchange (BAP)

Scattering locations

- Impurities
- Dopants
- Random alloy disorder

Marcy Stutzman PSTP 2024

O. Chubenko et al., Appl. Phys. 130, 063101 (2021)

FIG. 1. Three-step model of spin-polarized photoemission from *p*-type NEA GaAs: I—photoexcitation; II—transport; III—emission into the vacuum.

Approach to reduce alloy disorder and improve uniformity

Reduced random alloy disorder

- Digital alloying minimizes random alloy disorder
 - Broader high spin-polarization window
- InAlGaAs digital alloys should have
 - Better optical emission than random alloys
 - Better uniformity than random alloys

J. Dong, A. Engel, C. Palmstrøm et al., Phys. Rev. Materials 8, 064601 (June 2024)

D. Song,...,Y.T. Lee J. Cryst. Growth **270**, 295 (2004)

I. J. Fritz, J. F. Klem, M. J. Hafich, A. J. Howard *Appl. Phys. Lett.* **66**, 2825 (1995) C.S. Wang,..., A.C. Gossard, L.A. Coldren *J. Cryst. Growth* **277**, 13 (2005) ¹⁵

Random Alloy Disorder

- Quaternary well (InAlGaAs) adds random alloy disorder • increased bandwidth
 - decreased spin polarization

Parametric Studies: Random vs. Digital Alloy

Jefferson Lab 17

Parametric Studies: More Digital Alloy

Digital alloy #272 $\Delta = ~106$ meV hole splitting 82% Pol, 0.09% QE

Digital alloy #271 ∆ = ~79 meV hole splitting 74% Pol, 0.88% QE

Full parametric study, and most recent "standard" material

Jefferson Lab 19

Optimized temperature growth

- Polarization
 - P = 89.9 ± 2.3 % (93% laser corrected)
 - Laser polarization only ~96% at 750 nm
- High QE no DBR
 - QE = 2.08% at 750 nm
- Hole splitting
 - Δ = ~68 meV
 - Random alloy
 - Digital alloying can increase splitting

Jefferson Lab 20

Project Summary

- JLab: Polarimeter working reliably
 - Sharing with ODU project
 - Measuring final UCSB samples

UCSB:

- Aaron has graduated, new student Yu Wu
- MBE or CBE for GaAs/GaAsP not optimal
- MBE InAIGaAs/AIGaAs has advantages
 - Strain and band gap independent
 - Digital alloying for both SSL and DBR
 - Easy to arsenic cap
 - Standard setup for commercial vendors
- Seeking funding to continue

Many Thanks to Aaron Engle for photocathode growth, characterization and slides, and Chris Palmstrøm for guidance

erson Lab 21

