Compton Polarimetry for the MOLLER Experiment

Prakash Gautam

PSPT-2024 2024-09-27

Prakash Gautam

MOLLER is an experiment to measure the parity violating asymmetry A_{PV} in **polarized** electron-electron (Møller) scattering.

- MOLLER's proposed sensitivity of $\delta(\sin^2 \theta_W) = 0.00028$. This is competitive with high energy collider measurement at z-pole.
- Best contact interaction reach for leptons at low OR high energy.

- MOLLER requires the polarimetry precision of 0.4%.
- This is built on the success of compton polarimeter CREX with quoted precision of 0.4% at low energy.
- Requires
 - New Photon Detector.
 - Electron Detector.
 - Robust laser polarimetry.
 - Control of synchrotron background.

Compton Polarimetry

- This technique is non-destructive.
- It can be used for energies larger than $\simeq 1$ GeV.

$$k' = k \frac{E + p \cos \alpha_c}{E + k - p \cos \theta_\gamma + k \cos (\alpha_c - \theta_\gamma)}.$$
$$\mathcal{A}_c = \frac{\sigma_l - \sigma_l}{\sigma_l + \sigma_l}$$

Compton Polarimeter

- 4-dipole chicane deflects beam by 215mm to interact with laser system
- Electron detector between dipoles 3 and 4. Two parallel techniques for electron detector under development.;
 - Diamond strip detectors.
 - HVMAPS.
- Photon Detector lead-tungstate (PbWO4). Was used during the DVCS running in Hall A.
- Both electron detector and photon detector simultaneously independently used for polarization measurement.

Prakash Gautam

Dipole Shims

- Background from synchrotron radiation in the photon detector is a primary concern.
- Shims are added to chicane dipoles to mitigate synchrotron radiation at higher energies
- Implementing these shim designs is challenging due to constraints.

Compton Polarimetry for the MOLLER Experiment

Laser System Overview

- Laser system high finesse/high-gain Fabry-Perot cavity, pumped by narrow linewidth 1064 nm laser, frequency doubled to 532 nm.
- Laser system components: 1064 nm seed + 5-10 W fiber amplifier + PPLN doubling system generates 1 W green power

Prakash Gautam

Laser Polarization Determination

- Use back reflection to optimize the cavity.
- Use the outgoing beam to measure the polarization in the cavity.

- Hybrid pixel sensors based on HV-CMOS technology
- Each pixel dimension is 80 \times 80 $\mu {\rm m}^2,$ spread across a 250 \times 256 grid
- Approximately $2 \times 2 \text{ cm}^2$ detectable area.
- Readout electronics, filters and amplifiers all integrated into the chip.
- Timing resolution of 16ns with peak detection rate of 30 MHz per readout line

This is being developed at the University of Manitoba. More details on next talk by Shefali.

Electron Detector(Diamond Strip)

- New electron detector is required to meet precision goal for MOLLER.
- Diamond detectors being developed/fabricated.
- Previously successfully used for Hall-C Compton polarimeter during the Q_{weak} experiment. (Phys. Rev. X, 6(1):011013, 2016.)
- Plans to improve the performance during Q_{weak} by putting amplification electronics on the detector board.
- Substrates ordered from II-VI. Which is now delivered and perform suitably.

The SenselC in Columbus Ohio is developing new FLAT-32 ASIC and Ohio State University is making the diamond sensors.

- Lead tungstate calorimeter read out with a single PMT.
- 6m downstream from the compton interaction point.
- Can use threshold-less energy integration technique similar to low energy measurements.
- Will be able to calibrate response function with concidence electron detection.

Relative error (%)	electron	photon
Position asymmetries*		
E_{Beam} and λ^*_{Laser}	0.03	0.03
Radiative Corrections*	0.05	0.05
Laser polarization*	0.20	0.20
Background / Deadtime / Pileup	0.20	0.20
Analyzing power	0.25	0.35
Calibration / Detector Linearity	0.20	0.00
Total:	0.38	0.45

Topics marked * are common systematic uncertainties between the photon and electron analyses, while the others are largely independent between the detector systems.

Geant4 Simulation

- MOLLER has very stringent requirement on precision. Precise knowledge of electron polarization is very important to achieve that requirement.
- Combination of electron detector and photon detector provides very precise measurement of polarization using compton polarimetry.
- Experience from past experiments; PREX-II and CREX have provided essential insights that help improve technique to achieve expected 0.4% precision in polarimetry.