

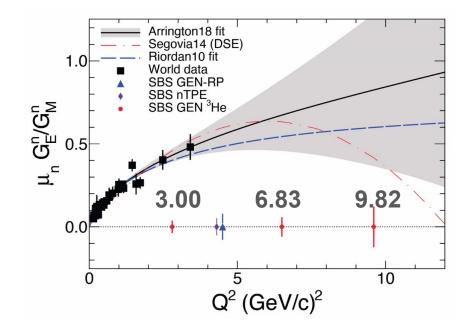
Polarized 3He Cell Production and Performance in the JLab SBS GEn-II Experiment

H. Presley

Outline

- SBS program and GEn-II
- □ Fabrication and Production of GEn-II Cells
- □ Characterization
- □ Cell performance
- □ Summary

Goal of SBS - Determine Sachs Electric and Magnetic Form Factors at high Q² values


- GMn : measure **GMn/GMp** up to $Q^2 = 13.5 \text{ GeV}^2 \text{ LD}_2$ target **Complete**
- **GEn-II** : measure **GEn/GMn** up to $Q^2 = 10 \text{ GeV}^2$ ³He target Complete
- GEn-RP : measure **GEn/GMn** up to $Q^2 = 4.5 \text{ GeV}^2 \text{ LD}_2$ target **Complete**
- GEp : measure **GEp/GMp** up to $Q^2 = 12 \text{ GeV}^2 LH_2$ target March 2025?

SBS GEn-II: Electric Form Factor of the Neutron

D Purpose: extract GEn at very high Q²

- Proton form factors available up to Q² values of ~10 GeV²
- □ For neutron, only GMn has been measured up to ~10 GeV²
- Before this experiment GEn measured up to 3.5 GeV²
 - Difficult to create high luminosity neutron targets
 - Neutron is neutral smaller value and harder to isolate from background
- Experimental Runtime (09/2022 11/2023)

Experimental Readiness Review - GEn

GEn-II Experimental Technique

- Historically two techniques: Rosenbluth Separation and Double Polarization
- GEn-II utilizes double polarization with asymmetry measurement
- Elastic (e-N) scattering cross section can be written as

 $\sigma_h = \Sigma + h\Delta$

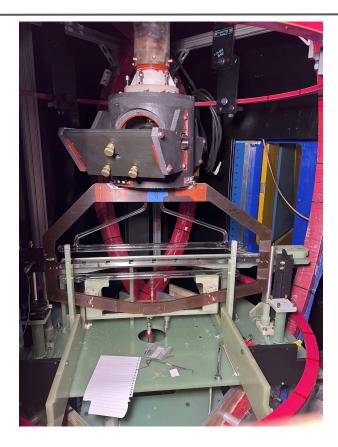
Physical Asymmetry is then written as

$$A_N = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} = \frac{\Delta}{\Sigma}$$

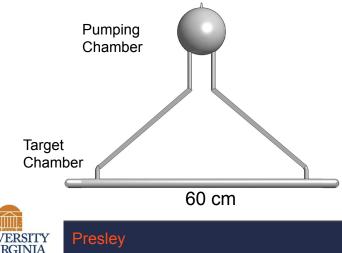
$$\vec{k}$$
 \vec{q}

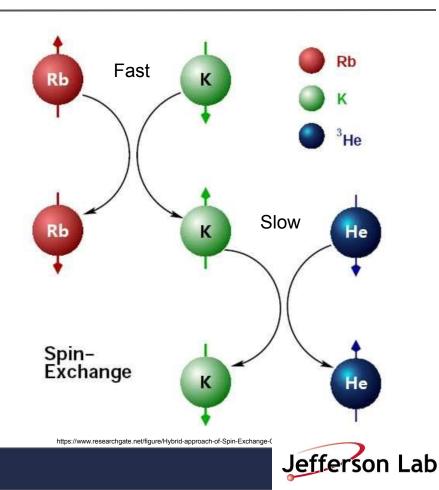
$$A_{\perp} = -\frac{G_E^n}{G_M^n} \frac{2\sqrt{\tau(\tau+1)}\tan(\theta/2)}{(G_E^n/G_M^n)^2 + (\tau+2\tau(1+\tau)\tan^2(\theta/2))}$$

Polarized ³He Target


- □ Many components to polarized 3He target
 - 3He Cell
 - Oven
 - Helmholtz Coils
 - Laser and Optics system
 - Soft Iron Shielding
 - RF Coils for NMR and EPR
 - Target Ladder

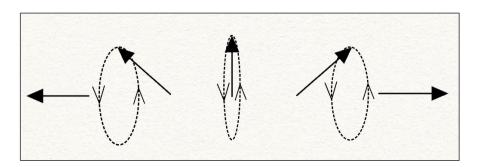
Polarized ³He Target

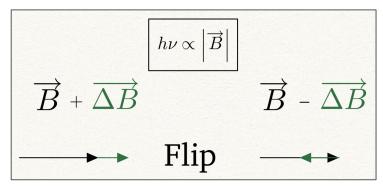




Spin-Exchange-Optical Pumping (SEOP)

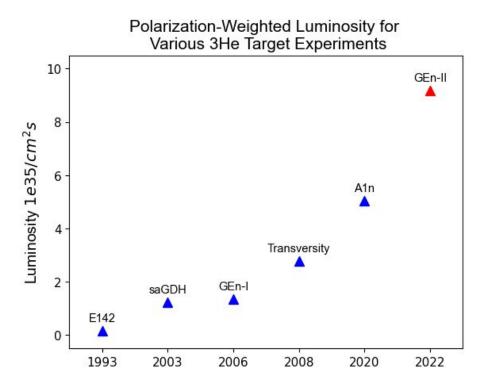
8

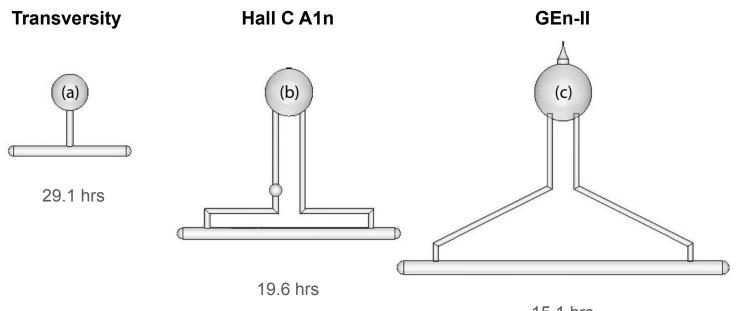

- Optically pumped high density alkali vapor
- Both Rb and K used for increased pumping efficiency
- 3He nuclei polarized through hyperfine interactions during collisions
- Convection used for fast mixing



NMR

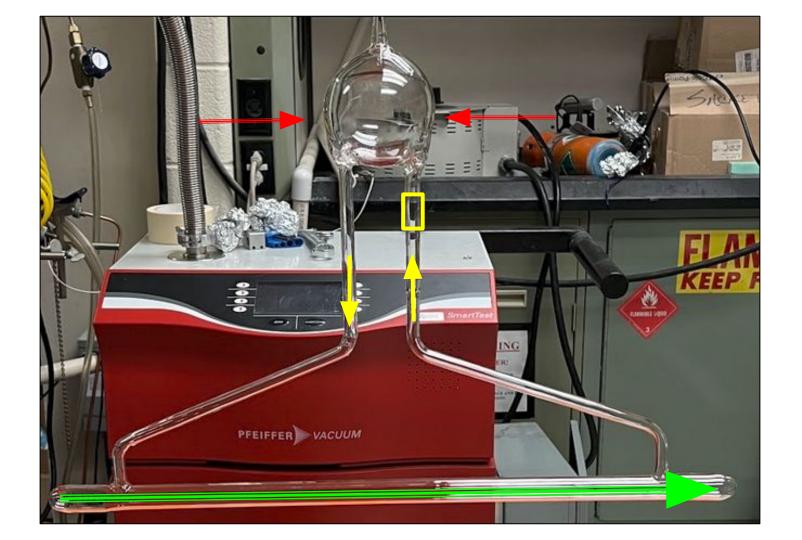
- Cell in magnetic holding field
- Apply RF (91KHz) field and sweep holding field
- Measure voltage of coils placed near the cell to track polarization signal during sweep
- Signal in mV


- Use feedback system to find the frequency at which unpaired electrons in the alkali atoms resonate
- □ Flip the spins of the 3He
- □ Find new resonance frequency
- □ The difference in the frequency is proportional to the 3He polarization
- Percentage of polarization


SBS GEn-II Goal: Record Breaking Target Performance

- Polarization-weighted luminosity of previous 3He targets
- Projected performance of GEn-II targets
 - Target chamber length increased to 60 cm
 - Target chamber volume increased by factor of 2
 - □ Bigger cell -> higher current
 - Limits depolarization effects
 - Projected goal: 45% at 45uA

Generations of Cells



IVERSITY /IRGINIA

Fabrication of ³He Cell

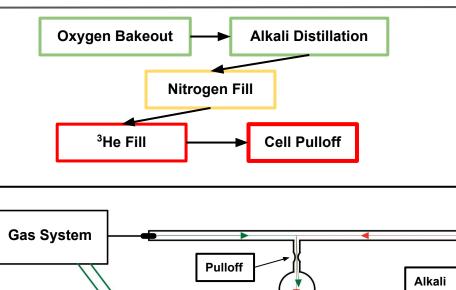
- □ Scientific Glass Blower Mike Souza
- GEn-II specifications set in order to achieve record breaking FOM
- □ Fabrication separated into two stages
 - Many target windows created and shipped to UVA for pressure testing
 - Best windows are selected and returned to Mike for final process of attaching the windows to the rest of the cell

Cell Fill Preparation

□ ~ 1-2 weeks

VERSITY IRGINIA

- Begins with oxygen bake 400°C to remove impurities on the surface
- Ends with alkali distillation



Cell Fill Process

- Alkali mixture transported into the pumping chamber via distillation
- 2. Small amount of nitrogen bled into the cell
- Target chamber submerged in liquid helium
- ³He fill is done iteratively until ~7 atm pressure at room temp achieved
- 5. Cell pulloff

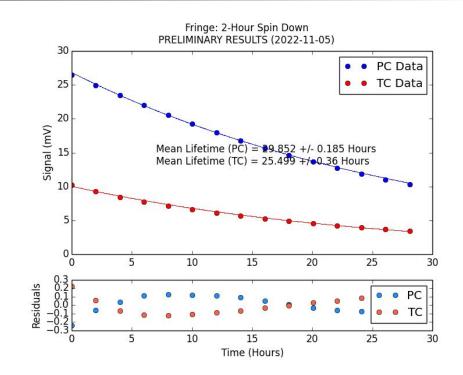
Cryo

Dewar

Filter

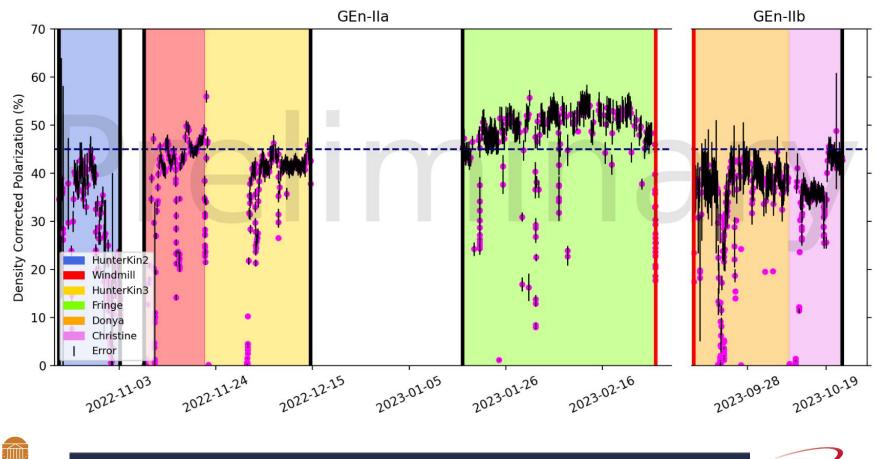
Cell Pulloff

UNIVERSITY VIRGINIA



Characterization and Selection

- Cell production continued throughout the majority of the experimental runtime
- At the end of production, 16 target cells had been successfully filled and characterized at UVA
- Cells with highest lifetime chosen
- **13 cells** fully prepped for installation in Hall
 A
- **6** were used in production data taking



	Cell Name	Average Polarization	Max Polarization	Duration Installed
Kinematic 2	Hunter	40%	46.08%	20 days
Kinematic 3	Windmill	45%	49.80%	14 days
	Hunter	42%	46.32	24 days
Kinematic 4	Fringe	53%	55.92%	60 days
	Chicago	n/a	43.60%	12 days
	Donya	40%	44.49%	31 days
	Christin	40%	45.57%	20 days

Jefferson Lab

University Virginia

Summary

- GEn-II experiment is **complete**!
- Target program was a success **45% at 45uA**
- **Six** of the **Sixteen** available ³He cells were used in the production setting
- Specific installation challenges which limited polarization discussed by Jack in the next talk!

Thank you!

