Methods in Using a Novel ³He **Target During GEn-II**

on behalf of the SBS Collaboration and the 3He Target Group

CHARTERED 1693

Jack Jackson

- Quick Overview of GEn-II Neutron Magnetic Form **Factor Experiment**
- Target Sub-Systems Needed for the Novel Target
- Effects on the ³He Target Performance

Outline

EXPERIMENTAL

at Thomas Jefferson National Accelerator Facility

The unique capability to install large, diverse experimental setups allows scientists to explore:

- Nucleon charge and magnetic structure
- Precision 3D momentum imaging of the neutron
- Precision tests of the Standard Model
- Nuclear constraints on dense astrophysical systems
- Nuclear structure at short distances
- Origins of mass from dynamical nuclear interactions

Hall A's international collaboration of scientists represents more than 70 institutions and 17 countries.

17 COUNTRIES

Armenia, Brazil, Canada, China, Croatia, Egypt, Eswatini, France, Italy, Japan, Saudi Arabia, Slovenia, South Korea, Tunisia, Ukraine, United Kingdom, and United States

U.S. Historically Black Colleges and Universitie J.S. Hispanic-Serving Institutions

Optical pumping of Rb vapor at 794.7 nm circularly polarized light

Spin exchange optical pumping

Q²= 2.9, 6.6, & 9.7 GeV²

Credit B. Wojtsekhowski, 2020 ERR

GEn-II On The Floor

Complicated

Laser Enclosure

Target enclosure

Laser Room

HH coils electronics

Counting house electronics

Ref Cell and Oven Controls

Target Area

- Laser fibers enter (grey box) •
- Upper Periscope Mirrors & Heating system (cyan)
- Helmholtz Coils, Oven, & Targets (rust)
- Beam enters W-SW to E-NE

Enclosure

Enclosure

- Helmholtz Coils
 - 25G Net Holding Field
 - RF Field
- Target Ladder
 - Heater Column
 - Oven
 - ³He Target
 - Carbon Foils
 - Reference Cell
- Cooling Jets / Lines
- Beam Pipe
- Tungsten Collimators

Oven Configurations for the GEn-II Kinematics

- Target oven rotated for each kinematic setting
- 3/8" spacer included to accommodate cell pull offs inside the oven
- Oven checked for alignment after rotation at each setting and the position was repeatable within noise of the survey and alignment device

- Needed Circular Polarization >99.5%
- Linewidth Requirement < 0.2nm
- Setup required LHP down one & RHP down opposite periscope
- Allowed for up to 100W per side
 - Limits heating & improves photon absorption through cell

SEOP Laser Optics

Laser Power Tests

"UVA" Optics

Laser Path Through "JLab" Optics

Preparing the Target Cell

- Cell mounting jig in EEL building used to mount bottom plate onto each cell
- TC chamber aligned carefully in V-shape slots of the mounting jig for alignment with beam axis in the hall

m plate onto each cell mounting jig for

All Targets Installed

- Heater tape for convection
- Carbon Foils
- Reference Cell
- Target Chamber NMR Coils

Polarimetry

 Completed during production running of each cell opportunistically (~3 Hours)

 Gives a generally accurate % / mV value to apply to NMR data in real time

Calibrations

- 1. Set Convection to 25V
- Wait 30 minutes for mixing 2.
- 3. Find EPR frequency through FM sweep
- NMR -> EPR -> NMR 4.
- 5. Reset Convection to 9V

- Laser Fiber Temp. Monitored for equipment / fire safety
- Cell temperatures initially monitored for "Polarization Dance" and density corrections
- Dance between Laser Power & Oven Temp.

- Low Target Polarization
- Tests for Magnetic field anomalies
- Laser issues (alignment & power losses)
- Nominal increase from 35% to 45% polarization after fix

Summary

- Larger Volume Convection Cells
- Very Good Polarization for SEOP Cells
- Record Breaking Luminosity for SEOP ³He Target

		Cell Name	Average Polarization	Max Polarization	Duration Installe
Kinema	tic 2	Hunter	40%	46.08%	20 days
Kinoma	tic 3	Windmill	45%	49.80%	14 days
Kinemat	lic J	Hunter	42%	46.32	24 days
		Fringe	53%	55.92%	60 days
Kinomatic 4		Chicago	n/a	43.60%	12 days
Killematic 4	UC 4	Donya	40%	44.49%	31 days
		Christin	40%	45.57%	20 days

Credit: Hunter Presley

