Developments of polarized ⁷LiD target system for spin-dependent EMC effect experiments at CLAS12

Tsuneo Kageya

Thomas Jefferson National Accelerator Facility (JLab)

- D. Akers, J. Brock, C. Carlin, G. Dezern,
- C. Flanagan, D. Griffith, M. Hoegerl,
- P. Hood, C. Keith, J. Maxwell, S. Madlock,
- D. Meekins (JLab Target Group)
- P. Dobrenz, X. Wei (Jlab Hall B)
- J. Creel, B. Mastracci (JLab Engineering Division)
- P. Dobrenz, M. Poelker, E. Pozdeyev
 (JLab Accelerator Division)

Related talks: J. Brock, "A Solid Polarized Target Development Facility at Jefferson Lab." (Tue.) X. Wei, "Preparation at Jefferson Lab. for Spin Polarized Fusion Program" (Thurs.)

1. Polarized (Spin-Dependent) EMC effects

Proposed experiments (Hall B, (PR12-14-001)) for Spin dependent EMC effects: - measure and compare spin dependent structure function g_1 from bound proton (p in ^{7}Li) with free proton (three H in $N\vec{H}_3$) at same experimental setup An example of theoretical prediction for polarized EMC for ⁷Li

Polarized EMC effect could be more enhanced than unpolarized ← Theoretical predictions

Х

 Longitudinally Polarized Solid Target for Spin dependent EMC effect at Hall B Use the same setup of target system as Run Group C (Run in 2022-23).
 DNP at 5 Tesla (Solenoid) and 1 K (⁴He evaporation cryostat) Use Longitudinally polarized e⁻ beams (11 GeV)

Side view of the polarized target installed in Hall B. A few elements of the CLAS12 spectrometer are shown.

2. Advantages of using polarized solid ⁷LiD and NH₃ targets for Spin dependent EMC effects

No so much data for ⁷LiD; use data from ⁷LiH, ⁶LiD and ⁶LiH

Solid ⁶LiD has been used as polarized targets in the past experiments: its performances are rather well known, ⁷LiD is supposed to perform similarly.

- a. Low mass nuclei like ⁷Li; detailed structure of nuclei is well known
- b. ⁷LiD and NH₃ can be highly polarized with DNP
- c. ⁷LiD and NH₃ are highly radiation resistant on electron beams
- d. Reasonable Dilution Factor

 a. Low mass nuclei like ⁷Li; detailed structure of nuclei is well known Structure of ⁷Li in a simple shell model picture

⁷Li: p (~ 87 % of Li spin)^{1,2} + n + n (- 0.04 %)^{1,2} + ⁴He (zero pol.)

6

b. ⁷LiD and NH₃ can be highly polarized with DNP

Polarization past records; as high as (at 5 Tesla and 1K on beam line)

* ⁷Li (in ⁷LiH) : ~ 60 %

(S. Bueltzmann etal. Nucl. Instr. and Meth. A 425 (1999) 23)

* H (in NH_3) : \geq 90 %

(from past experiments at JLab)

c. Radiation resistance for ⁶LiD (No data for ⁷LiD nor ⁷LiH)

S. Bültmann et al. /Nuclear Instruments and Methods in Physics Research A 425 (1999) 23-36

d. Acceptable dilution factor for ⁷LiD and NH₃

$Ratio (7LiD) \approx$	Number of polarizable bound proton	1	- 0 11
	Total number of nucleons	9	- 0.11
Ratio (NH_3) \approx	Number of polarizable free protons	3	- 0.18
	Total number of nucleons	17	- 0.10

Other nuclei candidates with a single valence polarized proton; ¹¹B (5p, 6n), ¹⁵N (7p, 8n), ¹⁹F(9p, 10n) and ²⁷Al (13p, 14n), for example. Heavier nuclei: smaller dilution factor.

 Three processes of producing and testing polarized target materials of ⁷LiD

I. Fabrications of a disc from ⁷LiD powder

II. Irradiation of ⁷LiD on CEBAF injector beam line

III. Polarization measurements at 5 Tesla and 1 K

I. Fabrications of a disc from ⁷LiD powder

* ⁷LiD powder is commercially available on the following conditions

- Isotopic purity of Lithium, ⁷Li : ~ 93 % and ⁶Li : ~ 7 %
- Isotopic purity of Deuterium, D : ~ 98 % and H : ~ 2 %
- Chemical purity, ≤ 5 % of impurities (LiOD, LiOD-H₂O, Li₂CO₂...) (Analysis of ⁷LiH powder (from a commercial company) by a group of LLNL (C.G. Bustillos etal., Annals of Nuclear Energy 185 (2023) 109709))

* Requesting service work to Y12 to fabricate disc (2 cm diameter and 2 mm thick)

II. Irradiation of ⁷LiD on CEBAF injector beam line (JLab) : New

NH³ and ND³ had been irradiated at NIST with collaboration of UVA target group in the past

II. Irradiation Cryostat (detail)

II. Irradiation conditions for ⁷LiD (higher polarization and shorter polarization building Time)

Some noteworthy past records for ⁷LiH & ⁶LiD (different irradiation temperatures and option)

	Group	T _{irrad} (K)	E _{e-} (MeV)	Dose (X 10 ¹⁷ e/cm ²)	P _{Li} (%)	T _{Build}	Т(К)	B(Tesla)	Year & note	
(1)	Bonn ¹	180	20	1	12	50 min	1	2.5	1995 (⁷ LiH)	 Standard
					15	8 min			Ad. Irad. 1K 10 ¹⁵ e-	
(1) Additional irradiations at Lower Temperature (3K): can increase P _{max} and shorten T _{build}										
(2)	SLAC ²	183 ±3	30	1.3 – 4.5	~ 60		1	5	1999 (⁷ LiH)	
(2) ⁷ Li in ⁷ LiD is expected to polarize as high as 60 % at 5 Tesla (may optimize dose)										
(3)	Bochum ³	190	20	0.1	-17.8	220 min	1	2.5	2001 (⁶LiD)	
		140		1	-17.9	60 min	1	2.5	Warm RT	
(3) ⁶ LiD at room temperature for 10 min; as od as on standard and may shorten T _{build}										

Irradiate NH₃ at 80 K (standard irradiation temperature) and 3 K (low temperature as (1)) in prior to 11 GeV beam.
 NH₃ materials will be supplied by Univ. New Hampshire group.
 14

- 1. S. Goertz etal., Nuclear Instruments and Methods in Physics Research A 356 (1995) 20
- 2. S. Bueltmann etal. Nuclear Instruments and Methods in Physics Research A 425 (1999) 23
- 3. A. Meier, 6LiD for the polarized target of the COMPASS experiment, PhD. Thesis, Ruhr-University Bochum 2001

III. DNP cryostat with 5 Tesla and 1 Kelvin (under design and construction)

Cryomagnetics Cryo-Free 5 T Warm Bore Magnet

Vertical 1 K cryostat

(Refer J. Brock's presentation)

Summary

- We are developing polarized ⁷LiD target system for Spin dependent EMC effect experiments at Hall B.
- 2. For this purpose, designing and constructing irradiation and polarizing cryostats.
- Plan to irradiate and polarize ⁷LiD target materials in the middle of 2025. Test materials and optimize parameters to obtain higher polarization and shorter building up time of polarization on the beamline.

Backup Slides

II. Irradiation of ⁷LiD (higher polarization and shorter polarization building Time) Summary of some past records; T_{irrad}, Pol_{Max}, Time_{Build} and polarizing conditions for ⁷LiH

Group	T _{irrad} (K)	E _{e-} (MeV)	Dose (e/cm²)	P _{Li} (%)	Р _Н (%)	BuildT	Т(К)	B(Tesla)	Year
Abragam ¹	77	3	2 x 10 ¹⁷	80	95	50 h	0.2	6.5	1978
Saclay ²	183	300-650	1	50	70	24 h	0.2 – 0.4	5	1985-87
	183	300-650	2	47	56	6 h	0.2 - 0.4	2.5	1985-87
PSI ³	180	3	2	90			0.2 - 0.4	2.5	1990
Saclay ⁴	184 ±4	30	0.5	31	42	3 h	0.2 – 0.4	2.5	1992
Bonn⁵	180	20	1	12		50 min	1	2.5	1995
				15		8 min			Ad. Irad. 1K 10 ¹⁵ e-
SLAC ⁶	183 ±3	30	1.3 – 4.5	~ 60			1	5	1999

Optional procedure: after irradiation keep ⁶LiD at room temperature for 10 min.

Bochum ⁷	190		0.1	-17.8	-18.6	220 min	1	2.5	2001
	140		1	-17.9	-18.7	60 min	1	2.5	Warm RT
Jefferson Lab									19

- 1. A. Abragam etal., J. Physique Let. 41 (1980) L-309
- 2. P. Chaumette etal. Proc. of 8th Int. Symposium of High Energy Spin Physics. 1988, 1275
- 3. S. Mango etal. Proc. of 9th Int. Symposium of High Energy Spin Physics, 1990, 320
- 4. J.J. Jarmer etal., Proc. Of 10th International Symposium on High Energy Spin Physics, 1992, 363
- 5. S. Goertz etal., Nuclear Instruments and Methods in Physics Research A 356 (1995) 20
- 6. S. Bueltmann etal. Nuclear Instruments and Methods in Physics Research A 425 (1999) 23
- 7. A.Meier, 6LiD for the polarized target of the COMPASS experiment, PhD. Thesis, Ruhr-University Bochum 2001

