Beam Commissioning Result of Polarized Target at SpinQuest

PSTP 2024 @ JLab

2024/Sep/25

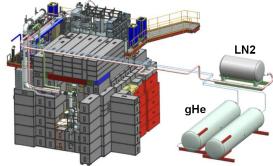
Kenichi Nakano

University of Virginia

Outline

- "SpinQuest Polarized Target System" by V. Bandara
 - Structure & performance of system components
- 1. Quick overview of SpinQuest experiment
 - (Unpolarized) high-intensity proton beam
 - Polarized target
 - Data-taking schedule
- 2. Achievements during beam commissioning
 - Beam-target alignment
 - Polarization under beam & material annealing
 - Beam characteristics & magnet quench
- 3. Conclusions

Proton Beam for SpinQuest @ FNAL



- From Main Injector
- Unpolarized
- Energy E = 120 GeV($\sqrt{s} = 15 \text{ GeV}$)
- Bunch
 - Interval: 19 nsec (53 MHz)
 - $^{\circ}~\sim \! 10k$ protons per RF bucket
 - $^{\circ}~\sim 2 imes 10^{12} \ {
 m protons}$ per spill (in 4 sec)
- Duty cycle
 - 4 sec for SpinQuest
 - $\circ~56~{\rm sec}$ for ν exp.

Beam Commissioning Result of Polarized Target at SpinQuest

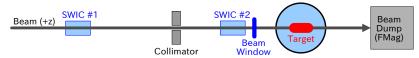
SpinQuest Target System

- Target cryostat in "Cave"
 - Surrounded by concrete blocks for radiation shielding
 - $^\circ~$ Evaporation fridge at $T\approx 1~{\rm K}$ & $B=5~{\rm T}$
- On "Cryo Platform"
 - Helium liquefaction plant
 - Roots pump for evaporation fridge
- Gaseous helium tank at outside
 - Closed helium system

Beam Commissioning Result of Polarized Target at SpinQuest

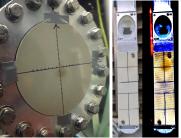
SpinQuest Schedule

-

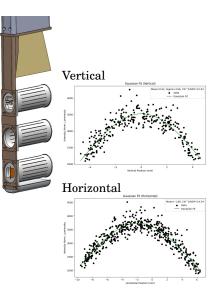

Year	Month	Event	
2023		Commissioning of spectrometer using cosmic rays	
2024	03	Lab approval for beam operation for SpinQuest	
	05	Delivery of first proton beam to SpinQuest	
	05-07	Commissioning of target & spectrometer using beam	
	07	Accelerator summer shutdown	
	11	Start of physics data taking	
		$\Downarrow 8 \text{ months}$	
2025	07	Accelerator summer shutdown	

- Carried out the beam commissioning in May-July this year
 - $\circ~$ Improvements about stability & efficiency of system operation
 - Acquisition of "physics" data
 - •• With NH3 target polarized
 - $\circ\circ$ With spectrometer fully operational
 - Data analysis & system upgrades are ongoing

Objectives of Beam Commissioning about Target


- Alignment of beam & target
- Measurement of beam intensity & profile
- Handling of target material
- Polarization under beam
- Annealing of target material
- Test of high beam intensity & magnet quench
- Sustainable operation of LHe production & consumption

Beam-Target Alignment

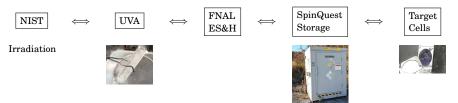

- Requirement: Control within a few mm
 - Target size = 21×27 mm
 - \circ Beam width = $\pm 3-4$ mm
- Multiple devices to adjust & confirm the alignment
 - Two beam profile monitors ("SWIC") at 2 & 6 m from target
 - $^{\circ}~$ G10 plate on beam window at 2 m
 - G10 plate on target cell
 - Tungsten plate in target cell

Beam Commissioning Result of Polarized Target at SpinQuest

- Multiple devices to adjust & confirm the alignment
 - Two beam profile monitors ("SWIC") at 2-4 m from target
 - $^{\circ}~$ G10 plate on beam window at 2 m $\,$
 - G10 plate on target cell
 - Tungsten plate in target cell
- Achieved precision $\approx 1 \text{ mm}$

Handling of Target Materials

- In physics data taking
 - Replace materials in target cells every week
 - Need regular material handling
- Materials tested in beam commissioning:


 CH_2

 ND_3

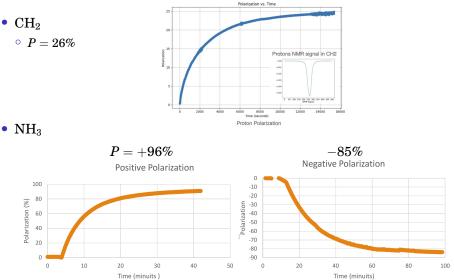
&

• Material production & transport

• The procedure for material transport has been established, in accordance with FNAL safety criteria

Beam Commissioning Result of Polarized Target at SpinQuest

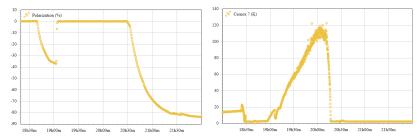
- Loading of materials to target cells
 - Designated area & procedure for safety
 - Many people trained



- Loading of target insert to fridge
 - Designated procedure
 - Many people trained

• The handling procedures have been established & conducted repeatedly

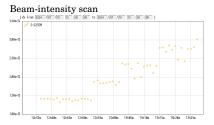
Polarization

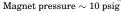


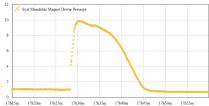
 $^{\circ}$ No polarization drop was observed under beam with $3 imes 10^{12}$ protons/spill

Beam Commissioning Result of Polarized Target at SpinQuest

Annealing of Target Material


- In physics data taking
 - Do the annealing once per day
 - Together with polarization flip
- Annealing was carried out once during commissioning
 - $^\circ~|P|\sim 40\%$ before annealing
 - $\circ~|P|\sim 80\%$ after annealing. Clear recovery




Quench Commissioning of Target Magnet

Soft quenches

- $^{\circ}~\sim 10~{
 m times}$
- Mostly caused by unstable beam position control
- $\circ~$ Beam intensity: $0.5 \cdots 1.5 imes 10^{12}$ protons per spill
- $^\circ~$ No helium loss, since the current was slowly taken out by the PS
- Hard quenches
 - Three on purpose to measure the max intensity. One by accidental loss of beam control
 - $^\circ~$ Beam intensity: $~3.0\mathchar`-3.3 \times 10^{12}$ protons per spill
 - As anticipated by heat-load simulation

Oxford Mercury iPS

Beam Commissioning Result of Polarized Target at SpinQuest

Operation of LHe System

- Production of LHe
 - $^\circ~$ Two liquefiers ("A" & "B") with each volume = 200 L
 - $^\circ~4~{
 m L}$ per hour ($\sim 50~{
 m SLM}$) by each liquefier
- Consumption of LHe
 - Transfer efficiency from liquefier to magnet
 - $^{\circ\circ}~50\%$ typically & 60% at best, due to long (~20 m) transfer line
 - $^{\circ}~$ In the target cryogenics

Magnet boil-off	7 SLM	
Separator flow	$20~\mathrm{SLM}$	
Fridge evaporation	20 SLM	
DNP microwave	0-20 SLM	
Beam proton	${\sim}0$	(0.4 W in only 4 s per 1 m)
Total	50-60 SLM	= 5 L/hour of LHe

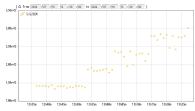
• Production rate \sim Consumption rate

- One problem Overtemperature
 - Cooling water is supplied by Fermilab for roots pump, liquefier & spectrometer magnets (FMag & KMag)
 - $\circ~$ Not powerful enough to always operate the systems due to
 - •• High outdoor temperature in May-July
 - •• Faults on cooling water system
 - $^{\circ}$ Liquefier off \Longrightarrow LHe shortage in magnet/fridge
- Improvements
 - Repair of cooling water system
 - $^\circ~$ Variable attenuator to minimize the power of DNP microwave
 - Better heat insulation for magnet & fridge
 - More LHe storage

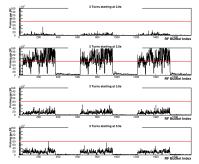
Conclusions

- SpinQuest is high-intensity frontier of polarized target
 - Evaporation refrigerator with highest cooling power
 - Longest target cell for 1K system
- The high polarization has been achieved

 $NH_3: \ +96\% \ \& \ -85\% \qquad / \qquad CH_2: \ 26\%$


- The practical operations have been established
 - Handling of target materials
 - $^{\circ}$ Behavior of magnet under high-intensity beam
 - Sustainable operation of LHe system
- Upgrades are ongoing toward the physics data taking
- If you are interested in target and/or physics at SpinQuest, please contact me or spokespersons;
 - Dustin Keller (UVA, dustin@virginia.edu) & Kun Liu (LANL, liuk@lanl.gov)
- This work is supported by DOE contract DE-FG02-96ER40950

Beam Commissioning Result of Polarized Target at SpinQuest


Beam Intensity & Profile

- Stable beam \Longrightarrow Stable magnet operation (and physics data taking)
- Intensity scan

- \circ 10¹² per spill (4 sec)
- Larger fluctuation at higher intensity


RF-bucket intensity

- $\circ~$ 1,764 RFs (33 $\mu sec) \times$ 4 samples
- Large (×10) fluctuations with fast & slow periods

Beam position

Beam width

• Stable within 1 mm

• 3-4 mm

- Larger shift during spill was observed
- The fluctuations had been anticipated to this level, based on the previous experiment (SeaQuest)
- Improvements under consideration
 - More monitoring parameters
 - $\circ~$ Better stability with fine tunings of accelerator parameters