Search for Electric Dipole Moments and Axions/ALPs in storage rings

Paolo Lenisa

University of Ferrara and INFN, Italy on behalf of the JEDI Collaboration

PSTP2024

20th Workshop on Polarized Sources, Targets, and Polarimetry September 23rd, 2024

Motivation and Methodology

Physics case

Addressed issues

- Preponderance of matter over antimatter
- Nature of Dark Matter (DM)

Experimental approach

- Measurements of static Electric Dipole Moments (EDM) of fundamental particles.
- Searches for axion-like particles as DM candidates through oscillating EDM

Electric Dipole Moment (EDM)

- Permanent separation of + and charge
- Fund. property of particles (like mag. moment, mass, charge)
- Possible via violation of time-reversal (T) and parity (P)

$$H = -\mu \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{B} - d\frac{\overrightarrow{s}}{s} \cdot \overrightarrow{E}$$

• T:
$$H = -\mu \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{B} + d\frac{\overrightarrow{s}}{s} \cdot \overrightarrow{E}$$

• P:
$$H = -\mu \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{B} + d \frac{\overrightarrow{s}}{s} \cdot \overrightarrow{E}$$

EDM meas. test violation of P and T symmetries ($\stackrel{CPT}{=}$ CP)

CP-violation & Matter-Antimatter Asymmetry

Matter dominance:

Excess of Matter in the Universe:

$$\eta = \frac{n_B - n_{\overline{B}}}{n_{\gamma}}$$
 observed SM prediction 10^{-18}

- Sacharov (1967): CP-violation needed for baryogenesis
- New CP-V sources beyond SM needed
- Could show up in EDMs of elementary particles

Static EDM upper limits

Direct EDM measurements missing

- No direct measurements of electron: limit obtained from (ThO molecule).
- No direct measurements of proton: limit obtained from ¹⁹⁹₈₀ Hg.
- No measurement yet of deuteron EDM.

Theory:

EDM of single particle not suffcient to identify CP violating source

Axion Dark Matter search with Storage Ring EDM method

• Experimental limits for axion-gluon coupled oscillating EDM measurements

Spin-precession of particles with MDM and EDM

Equation of motion for spin vector \overrightarrow{S}

In the rest frame of the particle

$$\frac{\overrightarrow{ds}}{\overrightarrow{dt}} = \overrightarrow{\Omega} \times \overrightarrow{s} = \overrightarrow{\mu} \times \overrightarrow{B} + \overrightarrow{d} \times \overrightarrow{E}$$

Spin-precession relative to the direction of flight

$$[(\overrightarrow{\Omega}_{MDM} + \overrightarrow{\Omega}_{EDM}) - \overrightarrow{\Omega}_{cycl}] = \frac{-q}{m} \left[\underbrace{G\overrightarrow{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\overrightarrow{v} \times \overrightarrow{E}}_{=\Omega_{EDM}} + \underbrace{\frac{\eta}{2}\left(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}\right)}_{=\Omega_{EDM}} \right]$$

Spin-precession of particles with MDM and EDM

Equation of motion for spin vector \overrightarrow{S}

In the rest frame of the particle

$$\frac{\overrightarrow{ds}}{\overrightarrow{dt}} = \overrightarrow{\Omega} \times \overrightarrow{s} = \overrightarrow{\mu} \times \overrightarrow{B} + \overrightarrow{d} \times \overrightarrow{E}$$

Spin-precession relative to the direction of flight

$$[(\overrightarrow{\Omega}_{MDM} + \overrightarrow{\Omega}_{EDM}) - \overrightarrow{\Omega}_{cycl}] = \frac{-q}{m} \left[\underbrace{G\overrightarrow{B} + \left(G - \frac{1}{\gamma^2 - 1}\right)\overrightarrow{v} \times \overrightarrow{E}}_{=\Omega_{EDM}} + \underbrace{\frac{\eta}{2}\left(\overrightarrow{E} + \overrightarrow{v} \times \overrightarrow{B}\right)}_{=\Omega_{EDM}} \right]$$

Frozen spin

- $\overrightarrow{\Omega}_{MDM} \overrightarrow{\Omega}_{cycl} = 0 \Rightarrow$ frozen spin (momentum and spin stay aligned)
 - Achievable with pure electric field for proton (G > 0): $G = \frac{1}{\gamma^2 1}$
 - Requires special combination of E, B fields and γ for d, 3 He (G < 0)

Search for static EDM in storage rings

Storage ring method to measure EDM of charged particle

- Inject beam of polarized particles in storage ring
- Align spin along momentum (→ freeze horiz. spin-precession)
- 3 Search for time development of vertical polarization

The COSY storage ring at FZ-Jülich (Germany)

COoler SYnchrotron COSY

- Cooler and storage ring for (pol.) protons and deuterons.
- Momenta p= 0.3-3.7 GeV/c
- Phase-space cooled internal and extracted beams

Previously used as spin-physics machine for hadron physics:

- Ideal starting point for Storage Ring EDM related R&D
- Dedicated and unique experimental effort worldwide
- Closed end 2023: essential R&D/expts. with MAGNETIC ring successfully done.

Experiment preparation

1 Inject and accelerate vertically pol. deut. to $p \approx 1 \text{ GeV/c}$

Experiment preparation

- 1 Inject and accelerate vertically pol. deut. to p \approx 1 GeV/c
- 2 Flip spin with solenoid into horizontal plane

Experiment preparation

- $oldsymbol{0}$ Inject and accelerate vertically pol. deut. to p pprox 1 GeV/c
- 2 Flip spin with solenoid into horizontal plane
- Extract beam slowly (100 s) on Carbon target
- Measure asymmetry and determine spin precession

Optimization of spin-coherence time

Invariant spin axis and spin-coherence time

Optimization of spin-coherence time

Invariant spin axis and spin-coherence time

I major achievement

[Phys. Rev. Lett. 117 (2016) 054801]

- $\tau_{SCT} = (782 \pm 117)$ s
- Previously: $\tau_{SCT}(VEPP) \approx 0.5 \text{ s}$ ($\approx 10^7 \text{ spin revolutions})$
- SCT of crucial importance, since $\sigma_{\textit{STAT}} \propto \frac{1}{\tau_{SCT}}$

Precise determination of the spin-tune

Spin-tune ν_s

$$u_{
m s} = \gamma {
m \it G} = rac{{
m \it nb.spin-rotations}}{{
m \it nb.particle-revolutions}}$$

Precise determination of the spin-tune

Spin-tune ν_s

$$u_{
m S} = \gamma {\it G} = rac{{\it nb.spin-rotations}}{{\it nb.particle-revolutions}}$$

Il major achievement [Phys. Rev. Lett. 115 (2015) 094801]

- Interpolated spin tune in 100 s:
- \bullet $|\nu_s| = (16097540628.3 \pm 9.7) \times 10^{-11} (\Delta \nu_s / \nu_s \approx 10^{-10})$
- Angle precision: $2\pi \times 10^{-10} = 0.6$ nrad
- Previous best: 3 × 10⁻⁸ per year (g-2 experiment)
- new tool to study systematic effects in storage rings

Phase locking spin precession in machine to device RF

Spin-feedback system maintains:

- resonance frequency
- phase between spin-precession and device RF

III major achievement [Phys. Rev. Lett. 119 (2017) 014801]:

Error of phase-lock σ_{ϕ} = 0.21 rad

Phase locking spin precession in machine to device RF

Spin-feedback system maintains:

- resonance frequency
- phase between spin-precession and device RF

III major achievement [Phys. Rev. Lett. 119 (2017) 014801]:

Error of phase-lock σ_{ϕ} = 0.21 rad

At COSY freezing of spin precession not possible \rightarrow phase-locking required to achieve precision for EDM

Measurements at the COSY Storage Ring

Measurement of EDM in a magnetic ring

First-ever direct EDM measurement using this method

- If external E fields = 0 spin motion is driven by radial field $\overrightarrow{E} = c\overrightarrow{\beta} \times \overrightarrow{B}$ induced by relativistic motion in the vertical \overrightarrow{B} field, so that $\frac{d\overrightarrow{S}}{dt} \propto \overrightarrow{d} \times \overrightarrow{E}$
- But this yields only small oscillation of vertical component p_y due to EDM.

Measurement of EDM in a magnetic ring

First-ever direct EDM measurement using this method

- If external E fields = 0 spin motion is driven by radial field $\overrightarrow{E} = c\overrightarrow{\beta} \times \overrightarrow{B}$ induced by relativistic motion in the vertical \overrightarrow{B} field, so that $\frac{d\overrightarrow{S}}{dt} \propto \overrightarrow{d} \times \overrightarrow{E}$
- lacktriangle But this yields only small oscillation of vertical component p_y due to EDM.

Problem

- Momentum ↑↑ spin spin ⇒ spin kicked up
- Momentum ↑ ↓ spin⇒ spin kicked down
- ⇒ no accumulation of vert. asymmetry

Measurement of EDM in a magnetic ring

First-ever direct EDM measurement using this method

- If external E fields = 0 spin motion is driven by radial field $\overrightarrow{E} = c\overrightarrow{\beta} \times \overrightarrow{B}$ induced by relativistic motion in the vertical \overrightarrow{B} field, so that $\frac{d\overrightarrow{S}}{dt} \propto \overrightarrow{d} \times \overrightarrow{E}$
- ullet But this yields only small oscillation of vertical component p_y due to EDM.

Problem

- Momentum ↑↑ spin spin ⇒ spin kicked up
- Momentum ↑ ↓ spin⇒ spin kicked down
- ⇒ no accumulation of vert. asymmetry

Solution: RF-Wien filter

- Lorentz force: $\overrightarrow{F_L} = q(\overrightarrow{E} + \overrightarrow{V} \times \overrightarrow{B}) = 0$
- \bullet $\overrightarrow{B} = (0, B_v, 0)$ and $\overrightarrow{E} = (E_x, 0, 0)$

Measurement of EDM in a magnetic ring Design of an RF-Wien filter¹

- Waveguide provides $\vec{E} \times \vec{B}$ by design.
- Minimal \vec{F}_L by careful electromagnetic design of all components.

¹Joint development with RWTH Aachen

Measurement of EDM resonance strength using pilot bunch RF Wien filter mapping

IV major achievement

- Observation of p_y (t) with two stored bunches: pilot bunch and signal bunch
 - ▶ Pilot bunch shielded from Wien-fillter RF by fast RF switches
 - Pilot bunch → unperturbed spin prec. (co-magnetometer) (subm. to PRL)
 - ▶ Signal bunch → enhanced signal (RF Wien-filter on resonance)
- Pilot bunch

Signal bunch

- No oscillations in pilot bunch.
- Decoherence visible in signal bunch.

Effect of EDM and misalignments on invariant spin axis

$$\begin{split} \phi_{\rm EDM} &= \arctan\left(\frac{\eta_{\rm EDM}\beta}{2\,G}\right) \\ \vec{n}_{\rm ISA} &\approx \left(\begin{array}{c} \phi_{\rm EDM} + \phi_{\rm Ring} \\ 1 \\ \xi_{\rm Ring} \end{array} \right) \end{split}$$

EDM absence

EDM effect

Magnetic misalignm.

EDM + magnetic misalignments tilt the invariant spin axis

- Presence of EDM $\rightarrow \phi_{EDM} > 0$
- Presence of magnetic misaligments $\rightarrow \phi_{EDM} \& \xi_{ring} > 0$
 - ightharpoonup spin precess around the \vec{n}_{ISA} axis
 - ightharpoonup ightharpoonup oscill. vert. polarization $p_y(t)$

Results from dEDM precursor experiment

EDM resonance strength map for ϵ^{EDM}

• Includes tilts of invariant spin axis due to EDM and magnetic ring imperfections.

Preliminary result on static EDM

 Determination of minimum via fit with theoretical surface function yields:

$$\phi_0^{WF}$$
 (mrad) = -2.05 ±0.02

$$\psi_0^{sol}$$
 (mrad) = + 4.32 ±0.06

Results from dEDM precursor experiment

EDM resonance strength map for ϵ^{EDM}

• Includes tilts of invariant spin axis due to EDM and magnetic ring imperfections.

Preliminary result on static EDM

- Determination of minimum via fit with theoretical surface function yields:
 - ϕ_0^{WF} (mrad) = -2.05 ±0.02
 - $\psi_0^{sol} \; (\text{mrad}) = + \; 4.32 \; \pm 0.06$

Extraction of EDM

- Minimum determines spin rotation axis (3-vector) at RF WF, including EDM
- $oldsymbol{2}$ Spin tracking in COSY lattice ightarrow orientation of stable spin axis w/o EDM
- 3 EDM is obtained from the difference of 1. and 2.

EDM analysis presently focused on systematics

- Data analysis close to final & EDM results in preparation.
- Goal: Describe observed tilts of stable spin axis by spin tracking

Measurement of axion-like particle in storage ring First-ever search for axion-like particles using this method

Axions and oscillating EDM

- Axion: candidates for light dark matter ($m_a < 10^{-6} \text{ eV}$)
- Axion interaction with ordinary matter: $\frac{a}{f_0}F_{\mu\nu}\tilde{F}_{\mu\nu}$, $\frac{a}{f_0}G_{\mu\nu}\tilde{G}_{\mu\nu}$, $\frac{\partial_{\mu}a}{f_a}\bar{\Psi}\gamma^{\mu}\gamma_5\Psi$
- $\frac{a}{f_0}G_{\mu\nu}\tilde{G}_{\mu\nu} o$ coupling to gluons with same structure as QCD- θ term
- Generation of an oscillating EDM with freq. related to mass: $\hbar\omega_a=m_ac^2$

Measurement of axion-like particle in storage ring

First-ever search for axion-like particles using this method

Axions and oscillating EDM

- Axion: candidates for light dark matter ($m_a < 10^{-6} \text{ eV}$)
- Axion interaction with ordinary matter: $\frac{a}{f_0}F_{\mu\nu}\tilde{F}_{\mu\nu}$, $\frac{a}{f_0}G_{\mu\nu}\tilde{G}_{\mu\nu}$, $\frac{\partial_{\mu}a}{f_a}\bar{\Psi}\gamma^{\mu}\gamma_5\Psi$
- $\frac{a}{f_0}G_{\mu\nu}\tilde{G}_{\mu\nu} o$ coupling to gluons with same structure as QCD-heta term
- Generation of an oscillating EDM with freq. related to mass: $\hbar\omega_a = m_a c^2$

Experimental approach

- $\bullet \ \, \text{Mag. dipole moment (MDM)} \rightarrow \text{spin prec. in B field} \rightarrow \text{nullifies static EDM effect}$
- Osc. EDM resonant condition ($\omega_a = \omega_s$) \rightarrow buildup of out-of-plane spin rotation

Experiment at COSY

Momentum ramps (f_{rev}) searching for polarization changes

Organization of frequency ramps.

• Jump of vertical polarization when resonance is crossed, for $\omega_a = \omega_s$

Bound on oscillating EDM of deuteron

Observed oscillation amplitudes from 4 bunches

- 90 % CL upper limit on the ALPs induced oscillating EDM
- Average of individual measured points $d_{AC} < 6.4 \times 10^{-23}$ e cm

Bound on axion-nucleon coupling

Limits on axion/ALP neutron coupling from the Particle Data Group

- It includes the result from the JEDI collaboration
 - S. Karanth et al., Phys. Rev. X 13 (2023) 031004

Next steps

Objective: construction of a dedicated SR for EDM studies

Possible approaches

- Staged approach
- One step approach

Stage 2: prototype EDM storage ring

100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- Frozen spin including additional vertical magnetic fields

Challenges

- All electric & E-B combined deflection
- Storage time
- CW-CCW operation → next slide
 - Orbit control
 - Control of orbit difference
- Polarimetry
- Spin-coherence time
- Magnetic moment effects
- Stochastic cooling

Objectives of PTR

- Study open issues.
- First direct proton EDM measurement.

Stage 3: precision EDM ring

500 m circumference (with E = 8 MV/m)

- All-electric deflection
- Magic momentum for protons (p = 707 MeV/c)

Challenges

- All-electric deflection
- Simultaneous CW/CCW beams
- Phase-space cooled beams
- Long spin coherence time (> 1000 s)
- Non-destructive precision polarimetry
- Optimum orbit control
- Optimum shielding of external fields
- Control of residual B_r fields

"Holy Grail" storage ring (largest electrostatic ever conceived)

Conclusions

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Key developments in accelerator technology

Fundamental achievements at COSY

- Spin-control tools
- First measurement of (static and oscillating) deuteron EDM

Next steps

- Feasibility study of a pure electrostatic EDM proton ring
- Possible approches
 - Staged approach
 - Direct approach

Conclusions

EDM searches in Storage Rings

- Outstanding scientific case with high discovery potential
- Key developments in accelerator technology

Fundamental achievements at COSY

- Spin-control tools
- First measurement of (static and oscillating) deuteron EDM

Next steps

- Feasibility study of a pure electrostatic EDM proton ring
- Possible approches
 - Staged approach
 - Direct approach

Excellent opportunity

- Interdisciplinary impact
 - Fundamental and particle physics
 - Astroparticle and hadron physics
 - Accelerator and data science

Selected publications

- D. Eversmann et al (JEDI Collaboration): New method for a continuous determination of the spin tune in storage rings and implications for precision experiments - Phys. Rev. Lett. 115, 094801 (2015)
- J. Slim, et al.:Electromagnetic simulation and design of a novel waveguide rf-Wien filter for electric dipole moment measurements of protons and deuterons
 Nucl. Instr. and Meth. A: 828, 116 (2016), ISSN 0168-9002
- G. Guidoboni et al. (JEDI Collaboration): How to reach a thousand-second in-plane polarization lifetime with 0:97 Gev/c deuterons in a storage ring - Phys. Rev. Lett. 117, 054801 (2016)
- N. Hempelmann et al. (JEDI Collaboration): Phase locking the spin precession in a storage ring - Phys. Rev. Lett. 119, 014801 (2017)
- F. Abusaif (CPEDM Collaboration): Storage Ring to Search for Electric Dipole Moments of Charged Particles - Feasibility Study - (CERN, Geneva, 2021)
- S. Karanth et al. (JEDI Collaboration): First Search for Axion-Like Particles in a Storage Ring Using a Polarized Deuteron Beam - S. Karanth et al., Phys. Rev. X 13 (2023) 031004.
- J. Slim, et al. (JEDI Collaboration): Proof-of-principle demonstration of a pilot bunch comagnetometer in a stored beam - J. Slim et al., submitted to Phys. Rev. Lett.

Spare slides

Polarimeter

Spin-dependent elastic deuteron-carbon scattering

- - $N_{up,down} \propto 1 \pm \frac{3}{2} p_z A_y sin(\nu_s \omega_{rev} t)$
 - p_d = 1 GeV/c ($\overline{\gamma_d}$ = 1.13) $\Rightarrow \nu_s = \gamma G \simeq$ 0.161 (spin-tune)
 - $f_{rev} = 781 \text{ kHz}$
- Left/Right asymmetry \(\precedent \) vertical polarization \(\to \) d

Time-stamp system

Asymmetry:
$$\epsilon = \frac{N_{up} - N_{down}}{N_{up} + N_{down}} = p_z A_y \sin(2\pi \cdot \nu_s \cdot n_{turns})$$

Challenge

- Spin precession frequency: 126 kHz
- $\nu_s = 0.16 \rightarrow 6 \text{ turns/precession}$
- event rate: 5000 $s^{-1} \rightarrow 1$ hit / 25 precessions \rightarrow no direct fit of rates

Solution: map many event to one cycle

- Counting turn number n \rightarrow phase advance $\phi_s = 2\pi \nu_s n$
- For intervals of $\Delta n = 10^6$ turns: $\phi_s \to \phi_s \mod 2\pi$

Implementation of fast switches² at RF Wien filter Modification of driving circuit

GaN HEM FET-based solution:

- Short switch on/off times (\approx few ns).
- High power capabilities (\approx few kV).
- On board power damping (- 30 dB)
- Symmetric switch on/off times (\approx ns).

35/40

Switches

- Capable to handle up to 200 W each
- Permits system to run near a total power of 0.8 kW in pulsed mode

¹Developed together with Fa. barthel HF-Technik GmbH, Aachen

Measurement of EDM in a magnetic ring Beam position monitors for srEDM experiments

• Main adv.: short install. length (\approx 1 cm in beam direction)

Conventional BPM

- Easy to manifacture
- Length = 20 cm
- Resolution \approx 10 μ m

Rogowski BPM (warm)

- Excellent RF-signal response
- Length = 1 cm
- Resolution \approx 1.25 μ m
- 2 coils installed at entrance and exit of RF Wien filter

Assembly stages of one Rogowski-coil BPM

Strength of EDM resonance

EDM induced polarization oscillation

- Described by: $p_y(t) = a \sin(\Omega^{p_y} t + \phi_{RF})$
- EDM resonance strength: ratio of Ω^{py} to orbital ang. frequency Ω^{rev} : $\epsilon^{EDM} = \frac{\Omega^{py}}{\Omega^{rev}}$

Methodology of EDM measurement

Two features simultaneously applied in the ring:

- 2 In addition: longitudinal magnetic field in ring opposite to Wien-flter, about which spins rotate as well

Concept of EDM measurement

- Determination of the invariant spin axis
- Deduce upper limit for deuteron EDM

E/B deflector development using real-scale lab setup

Equipment:

- Dipole magnet B_{max} = 1.6 T
- Mass = 64 t
- Gap height = 200 mm
- Protection foil between chamber wall and detector

Parameters:

- Electrode length = 1020 mm
- Electrode height = 90 mm
- Electrode spacing = 20 to 80 mm
- Max. applied voltage = \pm 200 kV
- Material: Aluminum coated by TiN

Results

Electrodes at the distance of 30 mm inside the vacuum chamber

- Electric field between the electrodes vs displacement.
- Measurement procedure shortened due to time constraints.
- Max. electric field strength: 7 MV/m with 60 mm spacing between electrodes
- Next step: setup moved to BNL?