A facility for testing bulk superconducting MgB_2 cylinder for the production of holding magnetic fields for polarized targets and nuclear fusion fuels

Giuseppe Ciullo

INFN-Ferrara INFN &

& University of Ferrara

Interest on Bulk Superconducting material : in polarized nuclear targets a magnetic holding field is required, nuclear targets might feel detector fields, influencing the polarization axis.

We are interested in fundamental studies on the orientation between projectiles and targets: indipendent fields and shielding of the surrounding fields are required.

We are around the interaction point, then we look for low thickness of material, low Z, reducing, or avoiding, material for powering, transportability from the preparation laboratory to the experimental site.

PSTP 24 Newport News

Bulk MgB₂ test – G. Ciullo

Outline of the idea for nuclear polarized target CLAS12-type • Choose a MgB₂ S.C. cylinder surrounding the target.

- - Set an outer transverse field.
- Cool down the S.C. Cylinder in the IBC (In Beam Cryostat) at 4 K
 - Ramp down the outer magnetic field.
- The perfect diamagnetism of the S.C. MgB_2 generates self supercurrents, which mantain the seen field inside the cylinder.

PSTP 24 Newport News

Moving to experimental or test sites

IBC (In Beam Cryostat) can be moved and inserted in CLAS-12.

In case of increasing of CLAS-12 field: supplementary self supercurrents in the MgB₂ will mantain the transverse field.

Everything without any power supply and corrent leads, or coils, in the surrounding.

PSTP 24 Newport News

Bulk MgB₂ test – G. Cíullo

Outline of the Idea for Polarized Fuel for nuclear fusion tests

Cold Head with an MgB₂ cylinder providing a holding field, in this case it will parasitically mantain the solenoidal field of the recombination chamber. The cylinder hosts inside substrate for condensation and it will be useful for transportation for fusion studies and tests.

... our starting point for faisibility study is a magnetic field of 1 T. Bulk MgB₂ test - G. Ciullo

The compact «self» magnet

Cylinder MgB₂ Shielding longitudinal fields Mantaining transverse fields.

Advantages

No Power feeding No Copper and Coils Auto tuning Semplicity Low cost of production few mm of thickness External Magnet

M. Statera et al. (2015). IEEE Tr Appl. S:C., vol. 115(3): 1 - DOI: <u>10.1109/TASC.2015.2388855</u>

Available Waste Material Machinable (G. Giunchi) diameter 39 mm - length 90 mm thickness ~1 mm

Bulk MgB₂ test – G. Cíullo

Production of MgB_2

➢ Díscovered 2001 (J.Nagamatsu [1] Nature 410(2001) 63).

Dífferent techinques of production:

- Japanese scientists: high pressure sintering HIP (Hot Isostatic Pressing)[1] or UHP (Uniaxial Hot Pressing).
- American Scientists: Mg vapor sintering of B fibers [2]
- Italian Scientists: Mg Reactive Liquid Infiltration [3] (Italian Patent Edison Spa pat., G. Giunchi, S.Ceresara 2001)

J.Nagamatsu et al. Nature 410 (2001) 63.
P.C. Canfield et al. PRL 86 (2001) 2423].
G. Giunchi et al. Int. J.Mod.Physics B 17 (2003) 453.

Available Waste Material Machinable (G. Giunchi) diameter 39 mm - length 90 mm thickness ~1 mm

PSTP 24 Newport News

Bulk MgB₂ test – G. Cíullo

Field Cooling - Field Trapping

Fíeld Trapping (Fíeld Cooling)

Zero Field Cooling or shielding

 $Mg'B_2$

100000 For the condition of Low ZYBCO-film HD-ice at 4 K 10000 Cheapper than LTS and HTS Current density Nb₃Sn Machinable: spark erosion and Jc (A/mm²) BSSC02223-PIT 1000 $J_c \ge 10\ 000\ {\rm A\ mm^{-2}}$ diamond tools NbTi (extrapolated) 100 MgB₂ Bulk -EDISON 10 10 2 4 6 8 12 14 16 0 B (T) G. Giunchi Internation Journal of modern Physics B 17 (2003) 300000 To be conservative we assumed B= 4T 250000 for our preliminary studies 🖝 = 3T ≜ = 2T 200000 $J_c \ge 1\ 000\ {\rm A\ mm^{-2}}$ + = 1T Jc (A/cm2) 120000 100000 J_c experimental data for 50000 SG (Small Grain size) continuous 35 15 20 25 30 and LG (Large Grain size) dashed line T (K) PSTP 24 Newport News Bulk MgB₂ test - G. Cíullo

Good performance at lower TReproducibility after many thermal cycles, quenches or flux jumps, opening of system and change of thermal insulation materials (2016 vs 2018)

Zero Field Cooling

PSTP 24 Newport News

Bulk MgB₂ test - G. Cíullo

New cold head (on loan from FZJ -R. Engels)

RDK-415D Sumitomo (SHI Cryogenics Group): 1st stage 35 W @ 50 K ,2nd stage 1.5 W @ 4.2 K (previous: 30 W @ 77 K, 6 W @ 10 K).

Better thermal stability and lower themperature

Bulk MgB₂ test - G. Cíullo

Upgraded system @ FE

PSTP 24 Newport News

Locations of the transv. and long. Hall probes

New power supply and transv. magnetic fiedl

Preliminary tests with 110 A (980 mT), now max current allowed on the coil 168 A (1 200 mT).. 1200**.** 1000 B in the center of the magnet [mT] 800 600 400 200 CAENels 0 50 0 100 150 200 Current [A] OCEM-CAEN - NGPS 200 A- 50 V high stability power supply PSTP 24 Newport News Bulk MgB₂ test - G. Cíullo

MgB_2 cylinders

Control, monitoring and DAQ

Cooling down W.O. cylinder less than 3.5 (4.5) h against > 7.5 h (blind)

Temperature dependency of Hall probe

Trapped field vs Heating power (i.e. T)

Trapped Field vs Ramp down speed

How long the fields can stay an how stable is?

Shíeldíng vs Heater power (Temperature)

Data Folder	Label	I max	Ramp up	B_{appl}	B ₂	B ₃	ΔB_{23}	B_4	<i>B6</i>	ΔB_{46}	ΔB_{24}	T_{RhFe}	T _{Cernox}
		[A]	$[A s^{-1}]$	[mT]	[mT]	[mT]	[mT]	[mT]	[mT]	[mT]	[mT]	[K]	[K]
2023-12-27_d	off	110	0,01	980,00	715,64	735,33	19,7	882,74	889,34	6,60	167,1	7,7	15,7
2023-12-28_b	9 K	110	0,01	980,00	10,20	9,15	-1,1	647,95	647,86	-0,09	637,8	8,7	16,1
2023-12-28_d	11 K	110	0,01	980,00	10,48	9,40	-1,1	649,48	656,12	6,64	639,0	10,8	17,1
2024_01_22_b) 13K	110	0,01	980,00	10,84	9,73	-1,1	658,20	665,84	7,64	647,4	13,3	18,7
2024-01-22_d	15 K	110	0,01	980,00	11,48	10,30	-1,2	673,14	681,77	8,63	661,7	15,8	20,1
2024_01_24_c	17 K	110	0,01	980,00	12,56	11,26	-1,3	695,35	704,83	9,48	682,8	18,8	22,0
2024_01_23_d	I 19 K	110	0,01	980,00	19,54	18,96	-0,6	780,31	780,55	0,24	760,8	24,4	26,2
2024-01-24_e	20 K	110	0,01	980,00	728,82	796,23	67,4	916,20	897,55	-18,65	187,4	29,5	30,2
2024_01_25_b	21 K	110	0,01	980,00	980,00	980,00	0,0	980,00	980,00	0,00	0,0	37,3	37,4

 B_{in} Penetrating Magnetic Field B_{annl} 960 mT and ramp up 0.01A s⁻¹

 B_{4}

PSTP 24 Newport News

 B_{in} vs Applied Magnetic Field

How long works the shield and how stable is it?

From SC to NC then Back in SC

ín 1/2 hour, we can go from superconducting state to the normal conducting one, and back at the set temperature.

PSTP 24 Newport News

Bulk MgB₂ test – G. Ciullo

And the other cylinders: P40 #7, P160 #8

P40 was the first one istalled after the upgrade, but ...

Smaller the grain size higher transport characteristics, but less thermal stability at lower *T* and lower *B*. Connectivity P100 ~ 61 %, P40 ~89 %, PAM~73 %

 J_c experimental data for SG (Small Grain size) continuous and LG (Large Grain size) dashed line

31

PSTP 24 Newport News

Bulk MgB_2 test - G. Cíullo

Shíeldíng 110 A ramp up 0.05 A/s

P40 #7

Early Zero Field Cooling then after reaching the lowest temperature Ramp up the external field.

PSTP 24 Newport News

MAGNETIzzAZION: less Trapped field and decreasing speedly (10 times more)

36

SHIELDING: hígher B_{ín} and íncreasíng speedly (100 tímes more)

Conclusions and Plans

We have in hands the system for testing «global» behavior of real bulk MgB₂ cylinders.

We can investigate the behavior of the cylinder with different preparation procedure also checking their reproducibility on the nominal label P160, P100, P40 and PAM cylinders.

We can test the superconducting behavior from the reached low temperature (T_{RhFe} 9 K - T_{cernox} 13 K) to the normal state transition.

FE apparatus at LASA-Mílano (or...)

(Laboratorío dí Acceleratorí e Superconduttività Applicata)

- At LASA is under plan to put in operation a 10 T superconducting solenoid.
- Experimental tests on
 - Trapping of Tranverse field and shielding of longitudinal field (target).
 - *Trapping of longitudinal field (fusion), but this is less critical than transverse field*-
 - *Mapping of field for tranverse self field and external longitudinal field, mapping of longitudinal field.*
- Checking theoretical model and tuning of them on data for field generation and shielding.
- Long time stability test for crossed beam in time interval for JLab targets and fusion test.

- Stability under movement in working conditions

Bulk MgB₂ test – G. Ciullo

I'd like to mention people involved in this work

Ferrara: Barion Luca, Contalbrigo Marco, Lenisa Paolo

Ferrara: SQUID measurements on MgB₂ sample of the production Spizzo Federico and Del Bianco Lucia

Barí: Tagliente Giuseppe – DAQ

JLab:

Lowry Michael, Sandorfi Andrew – HD-Ice and simulations

Mílano: Statera Marco

Thanks to the organizers for accepting the contribution and to the audience for the attention.

PSTP 24 Newport News

Bulk MgB_2 test – G. Cíullo

TEsts and measurements on P40 #7

Misura	Data		T(ITC)	Heater(ITC)	T(RhFe)	T(Cernox)	inizo	fine	Rampa	S2_inizio	S2_fine	Delta	#FJ	Fj_1	FJ@	Note
				[%]	[K]	[K]	[A]	[A]	[A/s]	[mT]	[mT]	[mT]		[mT]	[A]	Ĺ
M	2022-07-28	а	off	0	7.8	12.8	110	0	0.01	947	843	104	4	2	58	ł
M	2022-08-10	а	-	1.8=>0	7.9=>8.0	13.0	110	0	0.02	947	802	145	4	2	58	l .
M	2022-08-11	а	-	2=>0	7.9=>8.0	13.0	110	0	0.04	947	846	101	4	2	57	l .
M	2022-08-22	b	off	0	8.3=>8.5	13.1	110	0	0.1	948	844	104	3	7	44	Ĺ
M	2022-08-23	b	-	1.1=>0	8.3=>8.5	12.9	90	0	0.05	818	750	68	3	1	45	Ĺ
M	2022-08-24	b	-	1.3=>0	8.4=>8.5	13.0	70	0	0.05	852	607	245	3	1	27	l .
M	2022-08-25	b	-	0.9=>0.2	8.4=>8.5	13.0	50	0	0.05	472	447	25	0	-	-	Ĺ
M	2022-08-25	d	-	1.4=>0	8.4=>8.6	13.0	110	0	0.05	946	853	93	3	2	57	130h
M	2022-09-01	b	off	0	8.4=>8.5	13.9	110	0	0.25	948	826	122	2	10	40	110h
S	2022-09-06	b	off	0	8.5=>8.4	13.9	0	110	0.1	5	127	122	3	6	57	+OtherTests
S	2022-09-07	d	off	0.9=>0.2	8.5=>8.3	13.6	0	110	0.05	2	132	130	3	5	54	280h
S	2022-11-10	b	-	13=>16	9.2=>9.4	14.1=>14.6	0	110	0.05	2	137	135	2	10	64	
M	2022-11-14	b	-	23=>18	10.4=>9.8	15.7=>15.5	110	0	0.05	946	857	89	1	18	30	Ĺ
S	2022-11-16	b	-	13=>16	9.2=>9.4	15.2=>15.5	0	110	0.05	7	627	620	2	12	65	
S	2022-11-17	а	-	13=>16	9.2=>9.5	15.2=>15.4	0	110	0.05	4	678	674	2	15	68	
M	2022-11-18	b	-	23=>17	10.4=>9.8	15.7=>15.5	110	0	0.05	670	580	90	1	22	8	Ĺ
S	2022-11-22	a	9K	12.1	9.1	14.7	0	110	0.05	7	137	130	2	11	65	
S	2022-11-23	а	11K	24.1	10.6	15.7	0	110	0.05	3	124	121	1	37	81	
S	2022-11-24	а	13K	35.2	12.2	16.7	0	110	0.05	3	724	721	1	633	96	
M	2022-11-25	b	13K	35.2	12.3	16.7	110	0	0.05	946	864	82	0	-	-	70h
Μ	2022-11-28	b	11K	24.1	10.7	15.9	110	0	0.05	948	499	449	1	379	8	
M	2022-11-28	С	9K	12.2	9.2	15.6	110	0	0.05	948	862	86	1	12	34	
S	2022-11-29	а	15K	44.8	13.9	17.5	0	110	0.05	7	113	106	0	-	-	
M	2022-11-30	b	15K	44.8	14.0	17.5	110	0	0.05	947	862	85	0	-	-	1
1														1		1

Cilindro#7_P040

PSTP 24 Newport News

Bulk MgB_2 test - G. Cíullo

42

	•				ç	glued to	o Al tu	urret	· · · ·									
M	2023-12-22	a of	f	0	7.7	15.3	11	0 0	0.01	964	4	41	523	3	0.3 61			
M	2023-12-22	d of	f	0	7.7	15.2	11	0 0	0.01	964	g	49	15	2	0.2 63			
S	2023-12-27	b of	f	0	7.8	15.2		0 110	0.01	6	8	89	883	3	1 51			
S	2023-12-27	d of	f	0	7.8	15.2		0 110	0.01	3	7	36	733	1	723 85			
	2020 12 21				1.0	10.2		0 110	0.01				100	-	120 00			
C%																		
							Ci	lindro#6_F	2100									
S	2023-12-28 b	9K	11.9	8.6	15.5	0	110	0.01	4	15	11	0	-	-	1 📕			
S	2023-12-28 d	11K	23.9	10.7	16.5	0	110	0.01	4	15	11	0	-	-	1			
M	2024-01-02 f	9K	11.9	8.6	15.6	110	0	0.05	966	937	29	1	20	26				/
M	2024-01-02 h	11K	24.1	10.8	16.5	110	0	0.05	966	390	576	1	567	12			π	
M	2024-01-03 b	11K	23.9	10.7	16.5	110	0	0.05	964	378	586	1	577	11				e_{s}
M	2024-01-03 f	off	0	7.8	15.2	110	0	0.05	966	950	16	2	0.3	61				
M	2024-01-08 c	11K	24.1	10.8	16.5	110	0	0.01	964	955	9	0	-	-]			
M	2024-01-09 a	13K	35.1	13.0	17.8	110	0	0.01	965	955	10	0	-	-]	1	mnn	I C
M	2024-01-11 a	15K	44.8	15.5	19.4	110	0	0.01	964	954	10	0	-	-]		TIEN	21
M	2024-01-11 b	17K	53.1	18.2	21.2	110	0	0.01	964	954	10	0	-	-]			
M	2024-01-12 b	19K	60.8	23.8	25.4	110	0	0.01	966	953	13	0	-	-]			
M	2024-01-15 b	20K	64.6	28.5	29.3	110	0	0.01	964	861	103	0	-	-			- M	7
M	2024-01-16 b	21K	68.5	36.6	36.4	110	0	0.01	964	128	836	0	-	-				
S	2024-01-18 a	off	0	8.1	15.4	0	110	0.01	7	742	735	1	727	86				
S	2024-01-22 b	13K	35.1	13.0	18.0	0	110	0.01	5	16	11	0	-	-				
S	2024-01-22 d	15K	44.8	15.4	19.4	0	110	0.01	5	16	11	0	-	-				
S	2024-01-23 b	17K	53.3	18.3	21.4	0	103	0.01	5	16	11	0	-	-	Truncated			
S	2024-01-23 d	19K	60.8	23.8	25.5	0	110	0.01	5	24	19	0	-	-				
S	2024-01-24 a	off	0	8.2	15.2	0	110	0.01	5	738	733	1	724	86				
S	2024-01-24 c	17K	53.3	18.2	21.3	0	110	0.01	3	16	13	0	-	-				
S	2024-01-24 e	20K	64.6	28.5	29.3	0	110	0.01	3	733	730	1	672	79				
S	2024-01-25 b	21K	68.6	35.9	35.9	0	110	0.01	3	963	960	0	-	-				
S	2024-01-25 d	20K	64.6	28.3	29.1	0	110	0.01	5	734	729	1	663	79				
M	2024 02 04	151/	44.0	Cr	yostat lift for	BES3	meas	ures	075	000	10	0			1			
M	2024-02-01 a	15K	44.6	15.3	19.4	110	110	0.025	9/5	905	10	0	-	-	4			
5	2024-02-01 C	15K	44.6	15.3	19.3	110	110	0.025	070	18	12	0	-	-	-			
NI S	2024-02-05 C	15K	44.6	15.5	19.4	110	110	0.05	9/6	905	840	1	838	- 07	no pro coci			
0 C	2024-02-05 6	151	44.0	15.4	19.4	0	110	0.05	0	000	049 840	1	8/0	07	vos pro cool			
5	2024-02-06 0	17K	44.0 52.1	19.4	21.2	0	110	0.05	C	809	804	1	881	97	yes pre-cool			
S	2024-02-00 d	10K		23.7	21.3	0	110	0.05	4	850	8/6	1	831	0/	1			
s	2024-02-00 1	13K	34.0	13.2	18.0	0	110	0.05	4	788	784	1	774	01	-			
S	2024-02-00 11	10>11/	60 1-31 4	21 0-12 4	22 7-17 6	0	110	0.05	4	700	773	1	764	88	1			
M+rS	2024-02-00 a	15K	4/ 6	15.4	10.3	110	-110	0.03	976	-427	1403	1	1380	-45	Magnet rever	92		
M	2024-02-13	15K	44.0	15.4	10.3	110		0.025+0.01	076	966	10	0	1000		ForPresentati	ion		
M	2024-02-13 C	15K	44.0	15.4	19.3	110	0	0.025	976	065	11	0		-	Long: 15 gg	UT I		
	2024-02-22 0	101	-14.0	13.2	19.2	110	v	0.020	510	505	11	0	-		Louid: To AA			

Tests and measurements on P100 #6

43

TEsts and measurements on P100 #6

S	2024-03-18 a 1	15K	44.7	15.3	19.3	0	110	0.025	4	15	11	0	-	-	Long: 61 gg
M	2024-05-24 e 1	15K	44.8	15.4	19.5	150	0	0.025	1146	1133	13	0	-	-	150A
M	2024-07-08 b 1	15K	44.8	15.3	19.3	168	0	0.025	1197	1183	14	0	-	-	168A
M	2024-07-09 b 1	15K	44.8	15.3	19.2	130	0	0.025	1073	1061	12	0	-	-	130A
M	2024-07-10 b 1	15K	44.8	15.3	19.2	90	0	0.025	843	834	9	0	-	-	90A
M	2024-07-11 a 1	15K	44.8	17.0	24.0	130	0	inf	1073	1052	21	0	-	-	VeryFast 130A
S	2024-07-11 c 1	15K	44.8	15.4	19.3	0	168	0.025	3	21	18	0	-	-	130A
S	2024-07-12 a 1	15K	44.8	15.4	19.3	0	146	0.025	9	20	11	0	-	-	RegFault@146A
S	2024-07-12 c 1	15K	44.6	15.3	19.3	0	130	0.025	2	16	14	0	-	-	130A
S	2024-07-12 e 1	15K	44.8	15.3	19.3	0	146	0.025	2	18	16	0	-	-	150A, RegFault @146A
S	2024-07-12 g 1	15K	44.6	15.3	19.3	0	90	0.025	2	11	9	0	-	-	
M	2024-07-15 c 1	15K	44.8	15.4	19.4	110	0	1	976	421	555	1	547	5	FastRamp
M	2024-07-15 e 1	15K	44.8	15.4	19.4	110	0	0.5	975	350	625	1	616	6	FastRamp
M	2024-07-16 b 1	15K	44.8	15.4	19.3	110	0	0.25	975	324	651	1	642	4	FastRamp
M	2024-07-16 d 1	15K	44.8	15.4	19.3	100	0	0.5	914	287	627	1	618	0.1	FastRamp,100A
M	2024-07-16 f 1	15K	44.8	15.4	19.4	110	0	0.1	975	272	703	1	693	1	FastRamp
M	2024-07-16 h 1	15K	44.8	15.4	19.3	110	0	0.05	975	965	10	0	-	-	
M	2024-07-17 b 1	15K	44.8	15.4	19.4	90	0	0.5	841	833	8	0	-	-	FastRamp, 90A
M	2024-07-17 d 1	15K	44.8	15.4	19.4	90	0	1	841	833	8	0	-	-	FastRamp, 90A
M	2024-07-17 f 1	15K	44.8	15.4	19.3	110	0	0.075	975	965	10	0	-	-	FastRamp
M	2024-07-17 h 1	15K	44.8	15.4	19.4	90	0	1.25	841	833	8	0	-	-	FastRamp, 90A
M	2024-07-17 I 1	15K	44.8	15.4	19.4	90	0	1.5	841	367	474	1	467	0.1	FastRamp, 90A
(S)	2024-07-22 a 1	15K	44.8			0	168	0.025							RegFault@150A
(S)	2024-07-23 a 1	15K	44.8			0	168	0.025							RegFault@148A

Cilindro#6_P100

PSTP 24 Newport News

Bulk MgB_2 test - G. Cíullo

TEsts and measurements on P160 #8

															-	
S	2024-09-16 b	17K	53.3	18.3	21.1	0	110	0.01	4	325	321	0	-	-	S2 increasing	
S	2024-09-17 a	19K	60.8	23.7	25.3	0	110	0.01	4	655	651	0	-	-	S2 increasing	
												1	i		1	
					glued to A	l turre	t								-	
M	2024-08-01 c	off	0	8.6	15.2	110	0	0.025	976	700	276	5	1	57	1	
M	2024-08-01 d	15K	44.8	15.7	19.4	110	0	0.025	976	948	28	0	-	-	Ι	
(S)	2024-08-05 b	15K	44.8			0	150	0.025			0				RegFault@146/	4
S	2024-08-05 c	15K	44.8	15.6	19.2	0	140	0.025	2	370	370	0	-	-	S2 increasing, F	RegFaultDelayed
M	2024-08-06 a	11K	24.1	11.3	16.4	110	0	0.025	976	962	14	0	-	-	S2 decreasing	
S	2024-08-20 b	15K	44.8	15.3	19.2	0	110	0.025	6	195	189	0	-	-	S2 increasing	
M	2024-08-20 c	13K	35.1	13.1	17.6	110	0	0.025	975	957	18	0	-	-	S2 decreasing	
(M)	2024-08-20 d	17 → off	35.1 → off	$17.6 \rightarrow 14.7$	13.1 → 8.5	0	0	0	957	957	0	0	-	-	LongTail	
M	2024-08-21 a	17K	53.3	18.3	21.2	110	0	0.025	976	925	51	0	-	-	S2 decreasing	
S	2024-08-22 a	17K	53.3	18.2	21.1	0	110	0.025	7	328	321	0	-	-	S2 increasing	
S	2024-09-11 a	off	0	8.4	14.9	0	110	0.01	6	504	498	2	481	71	Ī	
S	2024-09-12 a	9K	12.2	9.3	15.3	0	110	0.01	4	856	852	1	814	103	6	
S	2024-09-13 a	11K	24.1	11.2	16.3	0	110	0.01	4	87	83	0	-	-	S2 increasing	
S	2024-09-13 c	13K	34.9	13.0	17.7	0	110	0.01	4	132	128	0	-	-	MagTripAfter,S2	2increase
S	2024-09-16 a	15K	44.8	15.4	19.1	0	110	0.01	3	199	196	0	-	-	S2 increasing	

Cilindro#8_P160

PSTP 24 Newport News

Bulk MgB_2 test - G. Cíullo

Shíeldíng long term stabílíty 1.5 -280 h.

CLAS12 INTEGRATION

Longítudínal polarízed target

Longitudinally Polarized Target - Technical Parameters

PARAMETER	DESIGN VALUE
Target material	Protons / deuterons (NH ₃ /ND ₃ , LiH, LiD)
Sample dimensions	2.5 cm diameter x 4 cm long, 60% filling factor
Polarization method	Dynamic Nuclear Polarization (DNP)
Magnetic field	5.0 Tesla
Temperature	1 Kelvin
Expected Performance	DESIGN VALUE
Proton polarization	>90%
Deuteron polarization	>40%
Proton & Neutron Luminosity	1.4 x 10 ³³ cm ⁻² s ⁻¹ per nA beam current
Maximum Beam Current	30 nA

PSTP 24 Newport News

Bulk MgB₂ test - G. Cíullo

Our starting point for faisibility study

Transversely Polarized Target – Technical Parameters

Parameter	Design Value
Polarizable target material; mass fraction	HD; 80%
Unpolarizable material; mass fraction	AI (as wire); 20%
Target dimensions	2.5 cm $\varnothing \times 2.5$ cm long
Polarization method	High-field, Low-temp equilibrium
In-beam holding field $B \times dL$	1.2 tesla \times 15 – 25 cm
H polarization	> 60%
H Luminosity	5 10 ³³ cm ⁻² s ⁻¹ per 2 nA
In-beam lifetime	≥1 nA-week per target

PSTP 24 Newport News

Bulk MgB₂ test - G. Cíullo

Lowry símulatíons

50

Lowry símulatíons

Production of MgB₂ by Mg-RLI (Mg Reactive Liquid Infiltration)

Fill a steel container by B Power and large chunks of MgB₂, weld the container and perform thermal treatment at about 900-950 °C in conventional oven for 12-24 h. B + Mg

Critical temperature (T_C) 39.5 K High density 2.4 g/cm³ High connectivity Very high superconducting characteristics High value of critical currents

Bulk MgB₂ test - G. Cíullo

PSTP 24 Newport News

52