Far-forward neutral particle asymmetry measurements in the RHICf experiment

PSTP 2024 @ Jefferson Lab September 23rd, 2024 Yuji Goto (RIKEN)

Outline

- Motivation (or history)
- RHICf experiment in 2017
- Far-forward neutron asymmetry
- Far-forward π^0 asymmetry
- Combined analysis with STAR detectors

Polarized proton acceleration at RHIC

 Keeping and monitoring polarization from the polarized proton source

Motivation (or history)

- Polarimeter at RHIC interaction point
 - Rotation angle (setting & measurement)
 - No transverse polarization component in longitudinal-spin collisions
- Far-forward calorimeter test at IP12
 - Discovery of large neutron single transverse-spin asymmetry
 - Phys. Lett. B 650 (2007) 325.
 - Large yield

 $A(\phi) = \frac{1}{P_B} \frac{\sqrt{N_{\uparrow,\phi} N_{\downarrow,\phi+\pi}} - \sqrt{N_{\uparrow,\phi+\pi} N_{\downarrow}}}{\sqrt{N_{\uparrow,\phi} N_{\downarrow,\phi+\pi}} + \sqrt{N_{\uparrow,\phi+\pi} N_{\downarrow}}}$ $=A_N\sin(\phi-\phi_0)$ -0.0 0.5

FIG. 4: Azimuthal dependence of asymmetry for the n-ID sample produced forward with respect to the polarized proton direction, based on the east detector. The error bars are statistical.

ZDC (Zero Degree Calorimeter)

- Hadron sampling calorimeter made of Tungsten plate and fibers
 - + 5.1 λ $_{\rm int}~$ & 149X $_0$ (3 ZDCs), Energy resolution \sim 20% @ 100GeV
- To measure the neutron hit position, SMDs (Shower Maximum Detector) installed between 1st and 2nd modules of ZDC
 - arrays of plastic scintillators
 - x: segmented by 7, y: segmented by 8

Motivation (or history)

- ZDC polarimeter @ PHENIX/STAR/BRAHMS
 - Spin rotator commissioning in 2003 run

Spin Rotators OFF

transversely-polarized proton collisions

Spin Rotators ON Current Reversed

radially-polarized proton collisions

Spin Rotators ON Correct Current !

longitudinally-polarized proton collisions

September 23, 2024

RHICf experiment in 2017

 EM calorimeter (RHICf detector) installed in front of the ZDC+SMD of the STAR experiment

- June 24 27 physics data acquisition
- $\beta^* = 8m$, radial polarization
- 27.7 hours, ~110M events, ~700 nb⁻¹
- 3 detector positions
 - TL center / TS center / Top position

September 23, 2024

RHICf detector

- Two position-sensitive sampling calorimeters
 - TS (small tower): 20mm x 20mm
 - TL (large tower): 40mm x 40mm
 - Tungsten absorber (44 X_0 , 1.6 λ_{int})
 - 16 GSO sampling layers
 - 4 XY pairs of GSO-bar position layers (MAPMT readout)

Far-forward neutron asymmetry

- Very large left-right asymmetry (A_N) of very forward neutron discovered at RHIC
 - $A_N(62 \text{ GeV}) < A_N(200 \text{ GeV}) < A_N(500 \text{ GeV})$
 - \sqrt{s} dependence or p_T dependence?
- Interference of pion exchange and other Reggeon exchange?
 - Kopeliovich, Potashnikova, Schmidt, Soffer: PRD84, 114012 (2011)
- Improved p_T precision and wider p_T coverage ($p_T < 1.2 \text{ GeV}/c$) at $\sqrt{s} = 510 \text{ GeV}$ in the RHICf experiment

September 23, 2024

Neutron asymmetry at RHICf

- Phys. Rev. D 109, 012003 (2024)
- In the low x_F range, the neutron A_N reaches a plateau at low p_T
- In the high x_F range, the plateau does not seem to be reached yet while the absolute value of the A_N explicitly increases in magnitude with p_T
- The backward A_N s are all consistent with zero
- In the low p_T range < 0.20 GeV/c, the forward A_N reaches a plateau of low A_N at low x_F (about 0.5) with little x_F dependence
- In the high p_T range > 0.20 GeV/c, the asymmetries appear to be leveling off at higher x_F (about 0.7), showing a clear x_F dependence
- The $x_{\rm F}$ dependence in the high $p_{\rm T}$ range was observed for the first time by the RHICf experiment

Neutron asymmetry at RHICf

- Comparison between the RHICf and PHENIX data
 - In the range of low $p_T < 0.2 \text{ GeV}/c$ and $x_F > 0.4$ that is overlapping with the PHENIX data at $\sqrt{s}= 200 \text{ GeV}$
 - Phys. Rev. D 105 (2022) 032004
 - The asymmetries are consistent with those by RHICf at $\sqrt{s}=510~{\rm GeV}$
 - The asymmetries are again consistent at both energies and show a flat x_F dependence
 - There is no or only a weak \sqrt{s} dependence

π^0 asymmetry at RHICf

- Phys. Rev. Lett. 124, 252501 (2020)
- Asymmetry ~ 0 backward & forward $p_{T} < 0.07~{\rm GeV}/c$
- Comparison with high $p_T > 0.5 \text{ GeV}/c$ data of the past experiments
- Nearly the same large asymmetry is reached at low $p_{T}<0.2~{\rm GeV}/c$
- Contribution of other mechanisms, diffraction and resonance, may provide a hint to the mystery

0.25r

0.15

0.05

-0.05^L

0.2

0 15

0.05

¥ 0.

v 0.1

0.2

6 < ŋ

 $p^{\uparrow}+p \rightarrow \pi^{0}+X$ at $\sqrt{s} = 510$ GeV

 $0.25 < X_F < 0.34$ $0.34 < X_F < 0.44$

 $0.44 < X_{r} < 0.58$

0.2

 $0.50 < p_{-}$

0.4

p_T (GeV/c)

< 0.69 GeV/c

→ π⁰+X at √s = 510 GeV

0.00 < p_T < 0.07 GeV/c 0.07 < p_ < 0.19 GeV/c

0.19 < p_T < 0.30 GeV/c 0.30 < p_L < 0.50 GeV/c

0.69 < p_ < 1.00 GeV/c

(a)

0.6

(b)

0.8

0.5

Combined analysis with STAR detectors

- Extending the RHICf standalone analysis to a combined analysis with STAR detectors to study the origin of the far-forward production
- Identify diffractive and non-diffractive events by using the STAR detectors,

Summary

- RHICf experiment in 2017
 - EM calorimeter (RHICf detector) installed in front of the ZDC+SMD of the STAR experiment
- Far-forward neutron asymmetry
 - Improved p_T precision and wider p_T coverage ($p_T < 1.2 \text{ GeV}/c$) at $\sqrt{s} = 510 \text{ GeV}$ in the RHICf experiment
- Far-forward π^0 asymmetry
 - Contribution of other mechanisms, diffraction and resonance, may provide a hint to the mystery
- Combined analysis with STAR detectors

Backup Slides

ZDC (Zero Degree Calorimeter)

Shower Maximum Detector

- To measure the neutron hit position, SMDs (Shower Maximum Detector) were installed between 1st and 2nd modules of ZDC
 - arrays of plastic scintillators
 - giving a position by calculating the center of gravity of shower generating in the $1^{\rm st}$ ZDC module
 - position resolution \sim 1cm @ 50GeV neutron (simulation study)

Physics motivation

- Cosmic-ray study
 - Cross section measurement to understand ultra-high energy cosmic rays

- Asymmetry measurement
 - To understand the hadronic collision mechanism based on QCD

RHICf experiment in 2017

• EM calorimeter (RHICf detector) installed in front of the ZDC+SMD of the STAR experiment

- Two position-sensitive sampling calorimeters
 - TS (small tower): 20mm x 20mm
 - TL (large tower): 40mm x 40mm
 - Tungsten absorber (44 X_0 , 1.6 λ_{int})
 - 16 GSO sampling layers
 - 4 XY pairs of GSO-bar position layers

September 23, 2024

2017 operation for RHICf

- June 24 27 physics data acquisition
 - $\beta^* = 8m$, radial polarization
 - 27.7 hours, ~110M events, ~700 nb^{-1}
- 3 detector positions: TL center / TS center / Top position

Far-forward neutron production

- PHENIX explains the result by 1 pion exchange
- More complicated exchanges at >TeV?

Far-forward neutron production

- Cross section measurement at HERA(e+p)/NA49(p+p)
 - High resolution p_T distribution
 - $\sigma \propto a(x_F) \cdot \exp(-b(x_F) \cdot p_T^2)$, b ~ 8 GeV⁻² for 0.3 < $x_F < 0.85$
 - *x_F* distribution
 - Suppression of the forward peak at high $\sqrt{s}?$
- More data necessary to understand the production mechanism
 - Asymmetry measurement as a new independent input

Neutron asymmetry @ PHENIX

- Recent PHENIX publication
 - Phys. Rev. D 105 (2022) 032004
 - p_T dependence at $\sqrt{s} = 200$ GeV
 - A_N increases in magnitude with p_T at high x_F
 - No clear *x_F* dependence

RHICf data analysis

- Shower trigger data
 - Energy deposits of any 3 consecutive GSO plates larger than 45 MeV
- Neutron photon separation
 - L_{90%} (L_{20%}): longitudinal depth for the integrated energy deposition in the GSO plates to reach 90% (20%) of the total
- Background subtraction
 - photon, charged hadron
- Unfolding
 - x_F , p_T , and ϕ
- A_N calculation

- arXiv:2310.09807
- In the low x_F range, the neutron A_N reaches a plateau at low p_T
- In the high x_F range, the plateau does not seem to be reached yet while the absolute value of the A_N explicitly increases in magnitude with p_T

- The backward A_N s are all consistent with zero
- In the low p_T range < 0.20 GeV/c, the forward A_N reaches a plateau of low A_N at low x_F (about 0.5) with little x_F dependence
- In the high p_T range > 0.20 GeV/c, the asymmetries appear to be leveling off at higher x_F (about 0.7), showing a clear x_F dependence
- The $x_{\rm F}$ dependence in the high $p_{\rm T}$ range was observed for the first time by the RHICf experiment

- Comparison between the RHICf and PHENIX data
- In the range of low $p_T < 0.2 \text{ GeV}/c$ and $x_F > 0.4$ that is overlapping with the PHENIX data at $\sqrt{s}= 200 \text{ GeV}$
- The asymmetries are consistent with those by RHICf at $\sqrt{s}=510~{\rm GeV}$

- Comparison between the RHICf and PHENIX data
- In the low p_T range that PHENIX covers at $\sqrt{s}=200$ GeV
- The asymmetries are again consistent at both energies and show a flat x_F dependence
- There is no or only a weak \sqrt{s} dependence

- Comparison with model calculations based on the π and a_1 exchange
 - B. Z. Kopeliovich et al., PRD 84 (2011) 114012
- The model did not predict the x_F dependence of the neutron A_N
- In the high x_F range, the A_N s are mostly consistent with the model calculations
- However, the model does not reproduce the A_N s in the low x_F range where the asymmetries are significantly smaller
- This may be because fragmentation is expected to dominate neutron production at low $x_{\rm F}$ over Reggeon exchange

- Comparison between the RHICf and PHENIX data
 - In the range of low $p_T < 0.2 \text{ GeV}/c$ and $x_F > 0.4$ that is overlapping with the PHENIX data at $\sqrt{s}= 200 \text{ GeV}$
 - Phys. Rev. D 105 (2022) 032004
 - The asymmetries are consistent with those by RHICf at $\sqrt{s} = 510$ GeV
 - In the low p_T range that PHENIX covers at $\sqrt{s}=200$ GeV
 - The asymmetries are again consistent at both energies and show a flat x_F dependence
 - There is no or only a weak \sqrt{s} dependence
- Comparison with model calculations based on the π and a_1 exchange
 - B. Z. Kopeliovich et al., PRD 84 (2011) 114012
 - The model did not predict the x_F dependence of the neutron A_N
 - In the high x_F range, the A_N s are mostly consistent with the model calculations
 - However, the model does not reproduce the A_N s in the low x_F range where the asymmetries are significantly smaller
 - This may be because fragmentation is expected to dominate neutron production at low $x_{\rm F}$ over Reggeon exchange

2017 run results

- π^0 asymmetry
 - Transverse single-spin asymmetry for very forward neutral pion production in polarized p+p collisions at √s = 510 GeV
 - Phys. Rev. Lett. 124, 252501 (2020)
 - Research News
 - <u>https://www.riken.jp/en/news_pubs/research_news/pr/2020</u> /20200623_1/index.html (RIKEN)
 - <u>https://www.bnl.gov/newsroom/news.php?a=117099</u> (BNL)
 - Asymmetry ~ 0 backward & forward $p_T < 0.07 \text{ GeV}/c$

2017 run results

- π^0 asymmetry
 - Comparison with high $p_T > 0.5 \text{ GeV}/c$ data of the past experiments
 - Nearly the same large asymmetry is reached at low $p_T < 0.2 \text{ GeV}/c$
 - Contribution of other mechanisms, diffraction and resonance, may provide a hint to the mystery

