PSTP

20TH INTERNATIONAL WORKSHOP ON POLARIZED SOURCES, TARGETS, AND POLARIMETRY

SEPTEMBER 22-27 JEFFERSON LAB

New DAQ for the 200 MeV Polarimeter at BNL Linac

G. Atoian, A. Cannavo, A. Poblaguev, A. Zelenski Brookhaven National Laboratory

Polarized Proton Beams at RHIC

Polarized injector, 200 MeV Linac and injection lines

- Linac beam current ~ 350 μA
- Linac pulse duration $\sim 300 \ \mu s$
- The microbunches 200 MHz
- The pulse period 2.1 s
 (every second pulse is directed to the 200 MeV polarimeter)
- The beam polarization ~ 80%

200 MeV *p*-Carbon Polarimeter:

- Initially, inclusive rates (measured by scalers) of scattered protons at 12° were used to determine the beam polarization with an accuracy of ~5%. For this configuration, $A_N \sim 0.62$.
- In 2010, the polarimeter was upgraded with 16.2° arms ($A_N \approx 0.993$ for elastic events) to precisely calibrate 12° measurements.
- Later, the increased beam intensity required more accurate monitoring of the measurements. To address this, a new data acquisition (DAQ) system based on VME waveform digitizers was implemented.

200 MeV Polarimeter

12 degree polarimeter

- $\langle A_N \rangle \sim 0.62$
- High rate
- Used for the polarization monitoring

16.2 degree polarimeter

- $A_N = 0.993 \pm 0.003$ (elastic)
- Inelastic events are suppressed by absorber.
- Low rate
- Used for the absolute polarization measurement.

Analyzing Power

- For $\frac{1}{2}+0 \rightarrow \frac{1}{2}+0$ elastic scattering, the analyzing power must reach $|A_N(T,\theta)| = 1$ at some point (T,θ) . Such points can be identified through phase shift analysis.
- In case of pC scattering, one such point occurs at $T_0 = 187.95$ MeV and $\theta_0 = 17.16^\circ$. Results of the experimental study of $A_N(T, \theta)$ around this point,

 $A_N(T,\theta) = 1 - \alpha (T - T_0)^2 - \beta (T - T_0)(\theta - \theta_0) - \gamma (\theta - \theta_0)^2$

S.P. Wells et al., Nucl. Instr. And Meth. A325 (1993) 205: $\alpha = 1.19(0.11) \times 10^{-4} \text{ MeV}^{-2}$ $\beta = 1.80(0.16) \times 10^{-3} \text{ MeV}^{-1} \text{deg}^{-1}$ $\gamma = 1.09(0.08) \times 10^{-2} \text{ deg}^{-2}$

can be used for precision determination of the analyzing power for 200 MeV proton-Carbon beam elastic scattering at 16.2°.

 $A_N^{\text{elastic}}(200 \text{ MeV}, 16.2^\circ) = (99.35 \pm 0.25)\%$

If not suppressed, the $\Delta = 4.44$ MeV inelastic background dilutes the analyzing power by about 2%.

Suppression of the inelastic events

Kinetic energy of the scattering proton depending the Carbon excitation Δ (for the 200 MeV beam energy and 16.2° angle.)

Δ, MeV	T, MeV	750
0 (Elastic)	198.5	9 450- 2 2
4.44	194.1	4,44 MeV + -0.9% - STATE
7.65	190.9	650 725 800 875 CHANNEL S

Derived from C. La Tessa et al., Life Sciences in Space Research 11, 18 (2016)

- Proton energy losses in High Density Polyethylene (HDPE)
- Elastic events can be separated from inelastic ones by appropriately selecting the active detector.
- Scintillator detector is well-suited for this purpose.

The 16.2° polarimeter (one arm)

The new DAQ is based on the 250 MHz, 14-bit WFD (SIS 3316)

- A 200 MHz Linac clock was used
- The full waveform of 35,534 samples (spanning 327 μs) was recorded for each scintillator in every bunch.
- The acquired data enabled comprehensive monitoring of the polarimeter's performance.
- Detailed processing of the data from a single bunch takes approximately 50 ms, allowing for real-time, online analysis.

The Typical Readout (spin up)

September 23, 2024

PSTP 2024. 200 MeV absolute polarimeter.

Event selection in the 16 deg. (elastic) polarimeter

Inelastic Events in the Elastic data

- Increasing thickness of the variable copper absorber by 1.6 mm effectively decreases the energy the elastically scattered proton from 198.5 MeV ($\Delta = 0$) to 194.1 MeV ($\Delta = 4.44$ MeV).
- As a result, the detection of the inelastic events in the 16 deg. polarimeter can be experimentally evaluated.

polarization by the inelastic component is (much) less than 0.1%.

Rate corrections

- Although the polarization measurements are free from dead-time, the results may still be influenced by pileup effect.
- To assess the impact of pileup, several waveforms with the same spin were superimposed, and the resulting composite waveform was processed in the usual manner.
- By analyzing the measured polarization dependence, $P(n_b)$, on the number of piled-up bunches, the corrected polarization value can be obtained by extrapolating to $n_b = 0$.

For the 16 deg. measurements:

- The rate corrected polarization can be approximated by P(0) = 2P(1) P(2).
- This correction is routinely applied during data analysis.
- Typically, the correction, $\Delta P_{\text{rate}} = P(0) P(1)$, is about +0.3%.
- The correction is calculated with high precision, with an accuracy better than 0.1%.

Inelastic 16 deg. polarimeter

- To minimize statistical errors in the measurements, data that did not pass the elastic event selection cuts were processed using looser "inelastic cuts" applied to only two scintillators.
- The effective analyzing power, $A_N = 0.979$, was determined by comparison with the "elastic polarimeter."

Optimization of the event selection cuts and a study of the stability of the effective analyzing power may be necessary to enhance performance.

12 degree polarimeter

- For RHIC Run 2024, a third scintillator was added to the 12-degree polarimeter, positioned after a 25 mm copper absorber.
- This configuration improved the event quality when using all three scintillators, while maintaining the original polarimeter setup when only the first two scintillators are considered.
- The effective analyzing power for the three-scintillator configuration is $A_N = 0.786$
- Further optimization of the 12-degree polarimeter configuration is still required.

PSTP 2024. 200 MeV absolute polarimeter.

Example of the polarization measurement

Run 34734, 18 h

Polarimeter	A_N	$n_b = 1$	$n_b = 2$	$n_b ightarrow 0$
16 deg. (Elastic)	0.993	76.66 ± 0.18	76.31 ± 0.19	77.00 ± 0.18
16 deg. (Inel.)	0.979	76.85 ± 0.13	76.54 ± 0.13	77.15 ± 0.13
12 deg.	0.786	73.88 ± 0.12	69.80 ± 0.13	77.04 ± 0.11
Total:				77.07 ± 0.08

- "Inelastic polarimeters" reduce the statistical error by more than a factor of two.
- However, the stability of their effective analyzing powers has not yet been studied.

- Systematic uncertainties in determining the *elastic* asymmetry, $a = A_N P$, are expected to be small, on the order of 0.1%.
- Therefore, the systematic uncertainty in the polarization measurement is primarily determined by the accuracy of the analyzing power A_N .

Effective analyzing power

 $A_N^{\rm eff} = (99.35 \pm 0.25)\% \times (1 + {\rm corr})$

Possible sources of systematic corrections to A_N^{eff} :

• **Geometrical misalignment** (beam angle, target and detector positions, detectors size): Since $dA_N(\theta)/d\theta = 0$, the correction is expected to be minimal.

 $\Delta x = 1 \text{ cm} (\Delta \theta \approx 5 \text{ mrad}) \implies \Delta A_N \sim 0.1\%$

• Beam Energy:

 $\Delta T = 1 \text{ MeV} \implies \Delta A_N \sim 0.4\%$

• Target Composition:

Is the target composed of pure ${}^{12}C$? Natural abundance of ${}^{13}C$ is 1.1%. However, this has a negligible effect on A_N^{eff} at 200 MeV.

• ...

- **Preliminary,** systematic error in value of the analyzing power is $|\Delta A_N| \lesssim 0.5\%$.
- A more detailed analysis is still required.

Summary

- During RHIC Run 2024, the new WFD-based DAQ system for the 200 MeV proton-Carbon polarimeter at Linac was successfully commissioned.
- The results indicated that the systematic error in beam polarization measurements could be reduced to as low as 0.5%.
- However, to ensure the required stability and reliability of these measurements, further enhancements in the detector configuration and data processing algorithms may still be necessary.