

20TH INTERNATIONAL WORKSHOP ON POLARIZED SOURCES, TARGETS, **AND POLARIMETRY**

SEPT. 22-27 | JEFFERSON LAB, NEWPORT NEWS, VA

Development of Polarized Lithium Sources for EIC

Chao Peng Argonne National Laboratory

09/23/2024

Overview – Why Polarized Lithium?

U.S. DEPARTMENT OF Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory
CRERGY managed by UChicago Argonne, LLC.

Extends the Scientific Reach of EIC Polarized ion sources beyond A = 3

- **•** Included in the project: polarized H, D, 3 He
- Polarized ion beams beyond $A = 3$
	- $-$ Polarized ⁶Li and ⁷Li
	- Extends science programs for nuclear physics at EIC
- Polarized Lithium-6 (spin-1)
	- Nuclear b structure functions *P. Hoodbhoy, R.L. Jaffe, and A. Manohar, Nucl. Phys. B, 312 (3), 571-588 (1989)*
	- Gluon Sivers function with tensor polarization *R.L. Jaffe and A. Manohar, Phys. Lett. B, 223 (2), 218-224 (1989)*
	- Reference study for the EMC effect of the deuteron in a nuclear medium
- Polarized Lithium-7 (spin-3/2)
	- Polarized EMC effect

*I.C. Cloët, W. Bentz, A.W. Thomas***, Phys. Lett. B 642, 210-217 (2006)**

Polarized Lithium-6 Source Tensor Polarization of a Spin-1 Nucleus

- Richer spin structure from the spin-1 nucleus
	- Additional structure function from inclusive DIS: **, and** $**b**₄$

Leading twist, Callan-Gross-like relation

- Reference study to polarized Deuteron measurements HERMES, JLab E12-13-011 (approved), and future EIC with polarized D source
- Tensor-polarized gluon distribution
	- Vector/tensor asymmetries measurements
	- Access gluon helicity PDFs and gluon Sivers functions

Polarized EMC Effects

Test the Theoretical Prediction with Polarized 7Li

- Large polarized EMC effects predicted at small x from models
	- $\frac{7}{1}$ i, ¹¹B, ¹⁵N, and ²⁷Al
	- Significant medium modification to the spin structure function
	- Awaits for experimental inputs with polarized light nuclei target/source
	- JLab Proposal PR12-14-001
	- Ongoing study with EIC kinematics

*I.C. Cloët, W. Bentz, A.W. Thomas***, Phys. Lett. B 642, 210-217 (2006)**

Techniques to Produce Polarized Lithium Beams

7

Previous Polarized Lithium Ion Sources

Polarized 6Li and 7Li Sources at 80s/90s

- The idea was realized in 80s/90s
	- University of Wisconsin, Madison

G.S. Masson, T. Wise, P.A. Quin, W. Haeberli, **NIM A242, 196-200 (1986)**

– Florida State University (OPPLIS)

E.G. Myers, A.J. Mendez, B.G. Schmidt, K.W. Kemper, P.L. Kerr, E.L. Reber, **NIM B79, 701-704 (1993)**

– HD-MPI (Heidelberg MP tandem) *D. Krämer et al., Nuclear Instruments and Methods in Physics*

Research 220 (1984) 123-132.

H. Jänsch et al., Nuclear Instruments and Methods in Physics Research A254 (1987) 7-12.

- Polarization techniques
	- Stern-Gerlach system
	- Optical pumping

Optical Pumping of Lithium

- Polarize lithium atom beam
	- With laser at ≈671 nm
	- High polarization achieved with the laser power of about 30~35 mW

 0.6 For simplicity, only High P_7 , P_{77} after $\Delta m_F = +1$ showing decays about 6~9 cycles $\sigma^ \Delta m_F =$ from this state $F = 3/2$
 $F = 1/2$ 0.4 $2P_{1/2}$ Survived state after $O.2$ many cycles $= 3/2$ $2S_{1/2}$ 8 $10¹$ $F = 1/2$ Time in units of β_0^{-1} $m_c = -3/2$ $-1/2$ $1/2$ $3/2$ *L.W. Anderson, G.A. Nimmo,* **Phys. Rev. Lett. 42, 1520 (1979) LS. DEPARTMENT OF Argonne National Laboratory is a**
ENERGY U.S. Department of Energy laboratory 9

Nuclear vector pol.: $P_Z = N_1 - N_{-1}$ Nuclear tensor pol.: $P_{ZZ} = 1 - 3N_0$

.
ZZ

 1.0

 0.8

Proposed Polarized Lithium Sources for EIC

- **Development of polarized** 6 **Li and** 7 **Li sources at Argonne**
	- Optical pumping using modern solid-state lasers

Development of Polarized Lithium Sources at Argonne

11

Collobaration between ANL and UKY A Growing Collaboration

- Collaboration since 2022/09
- Supported by Argonne LDRD, future support from DOE EPSCoR

Project Goals and Milestones

- **GOAL (Phase 1)**: Produce polarized Lithium-ion beam and precisely determine its polarization
- **MILESTONES:**
- **Done√** Build the system and produce Lithium vapor beam Vaporizing oven, convergence-divergence nozzle, and vacuum system were built in this summer
- **Prog.** > Study and optimize the beam profile with benchmarked simulation Two sets of hot-wire beam profile measurements were implemented, profile measurement data were taken and being studied with simulation
- Plan **D** Polarize Lithium vapor beam and implement the Breit-Rabbi Polarimeter Acquired a single-frequency tunable laser at 671 nm (25 mW) + future booster Polarimeter design optimized by simulations
- **Phase 2:** Study the injection into the EBIS

Current Experimental Setup

Controlling computer (with EPICS)

Vacuum gauge

RGA

1st wire-scanner

End viewport (visual measurement)

> 2nd wire-scanner (will be installed)

CO2 Gas line (flushing chamber) Oven and nozzle Water lines Temperature sensor Vacuum pump

Vaporizing Oven Design

- Oven operates at around 850 °C
	- \blacksquare 6Li vapor pressure ~7.6 mbar
	- **Expected ⁶Li ion current** $> 0.2 \mu A$, $\sim 10^{12}$ ions/sec
- Isolated crucible with a water-cooling shell
	- **•** Crucible volume: \sim 2 cm³
	- **Currently testing with Lithium** Hydride (LiH)
	- **Planned for replacement with pure** Lithium
- Refilling feed-through

Convergence-Divergence Nozzle

- De Laval Nozzle
	- Replaceable
	- **•** Fully contained in the heating filaments (prevent for clogging)
	- Convert the Lithium vapor into a non-divergent beam
- Inner contour design
	- 2-mm-diameter throat
	- Initial design from Computational Fluid Dynamics (CFD) simulation
	- Will be further optimized after benchmarking simulation with real profile measurements

Nozzle-Oven Interface

CFD Simulation for Nozzles

- Need a Non-divergent beam
	- **•** Initial design with CFD simulation
	- **•** benchmarking with real data
	- Plan to re-optimize the design

10

5

 $\bf{0}$

-5

Outlet (Medium Vacuum)

 $P = 0.01$ mbar, T = 293 K

0.0070 0.0062

 0.0053 0.0045

 0.0036

0.0011 $2.9E-4$

75

50

Meshes for FEA

Density 0.0028 0.0020

0.236 [6.0]

Beam Profile Measurement

- Benchmark the simulation
- Design and preparation for the measurements
	- Visual measurement: transverse deposit of Li-6 beam
	- Wire scan measurement
		- ‒ Ionizer-wire scan (thermal ionization)
		- Laser-wire scan

Appl. Opt. 49, 6816-6823 (2010)

Nuclear Instruments and Methods in Physics Research A242 (1986) 196-200

Rhenium wire used in the measurement

Beam Profile Measurement

Lithium Deposit on the End Viewport

Progress of the Development

- Vacuum system, oven, and nozzle were built
	- \checkmark Dull nozzle (straight hole) + De Laval nozzle
	- Stable oven operation at 850℃
	- \checkmark System operates at around $10^{-5} 10^{-6}$ torr
	- \checkmark Lithium observed at RGA
	- \checkmark Lithium deposit observed at the end viewport
- Hot-wire scan measurement
	- \checkmark First set of measurement close to the nozzle exit
	- \checkmark The second set will be at about 6 inches downstream
	- \checkmark Test measurements (empty or with Lithium) of the first set
	- \triangleright Analyzing the data and benchmarking simulations

Future: Polarization, Ionization, and Polarimetry

- Polarization: optical pumping
- Ionization: hot oxygenated Tungsten surface
- Breit-Rabbi polarimeter
	- Precision polarization measurement
	- Simulation package (Pytomic) developed from ANI I DRD

Summary

- \bullet We are developing polarized 6 Li and 7 Li sources for EIC
	- Collaborated work between ANL and UKY (may grow in the future)
	- Rich physics program with the new polarized ions beyond A=3
	- Revival of old techniques with modern technologies
- Current status of the development
	- Major parts of the system were constructed and assembled
	- Lithium vapor beam produced
	- Beam profile measurements conducted
	- Simulation is being benchmarked and further optimization is expected
	- Plan to start the optical pumping(solid-state laser at 671 nm acquired)

THANK YOU!

This work is supported by the ANL LDRD Project 2023-0157 and by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. Future support from DOE EPSCoR (Award Number: DE-SC0025511).

Lithium 6 Vapor Pressure

- A gram of Lithium-6 should be more than enough
	- Semi-confined in the oven volume ~ 0.9 cubic cm
	- Assumed **ideal gas law**, **1100 K** and **1 bar** -> **0.06 mg** of Li-6
	- Of course we are continuously sending out Li-6 through the nozzle
	- Fluid dynamics -> values of P, T, N are difficult to estimate
- Lithium vapor pressure J. Chem. Phys. **38**, 1873 (1963); <https://doi.org/10.1063/1.1733889>
	- **Isothermal expansion**
	- 800℃ (1073 K) 3.5 mbar
	- 850℃ (1123 K) 7.6 mbar
	- 1174℃ (1447 K) 302 mbar
	- 1324 °C (1597 K) 1 bar

Two extreme

cases

Oven and Nozzle Interface

- Nozzle throat inside the heating element
	- Prevent Li6 clog
- Mount with 6-inch vacuum tubes
- Currently building the oven

 $-.88-$

DETAIL B SCALE 1:1

 \bullet \bullet \bullet \bullet

0000

J.S. DEPARTMENT OF Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory

