PSTP⁵

20[™] INTERNATIONAL WORKSHOP ON POLARIZED SOURCES, TARGETS, AND POLARIMETRY

Development of Polarized Lithium Sources for EIC

Chao Peng Argonne National Laboratory

09/23/2024

Electron Ion Collider

Science Goals for Polarized Beams

3D structure of nucleons and nuclei

Proton spin puzzle

Quarks and gluons in nuclear matter

Quark gluon confinement

Color glass condensate

Clearly require the polarization degree of freedom for proton and nuclei!

Extends the Scientific Reach of EIC

Polarized ion sources beyond A = 3

- Included in the project: polarized H, D, ³He
- Polarized ion beams beyond A = 3
 - Polarized ⁶Li and ⁷Li
 - Extends science programs for nuclear physics at EIC
- Polarized Lithium-6 (spin-1)
 - Nuclear b structure functions

P. Hoodbhoy, R.L. Jaffe, and A. Manohar, Nucl. Phys. B, 312 (3), 571-588 (1989)

- Gluon Sivers function with tensor polarization
 R.L. Jaffe and A. Manohar,
 Phys. Lett. B, 223 (2), 218-224 (1989)
- Reference study for the EMC effect of the deuteron in a nuclear medium
- Polarized Lithium-7 (spin-3/2)
 - Polarized EMC effect

I.C. Cloët, W. Bentz, A.W. Thomas, Phys. Lett. B 642, 210-217 (2006)

Polarized Lithium-6 Source

Tensor Polarization of a Spin-1 Nucleus

- Richer spin structure from the spin-1 nucleus
 - Additional structure function from inclusive DIS:
 b₁, b₂, b₃, and b₄

Leading twist, Callan-Gross-like relation

- Reference study to polarized Deuteron measurements
 HERMES, JLab E12-13-011 (approved), and future EIC with polarized D source
- Tensor-polarized gluon distribution
 - Vector/tensor asymmetries measurements
 - Access gluon helicity PDFs and gluon Sivers functions

Polarized EMC Effects

Test the Theoretical Prediction with Polarized ⁷Li

- Large polarized EMC effects predicted at small x from models
 - ⁷Li, ¹¹B, ¹⁵N, and ²⁷Al
 - Significant medium modification to the spin structure function
 - Awaits for experimental inputs with polarized light nuclei target/source
 - JLab Proposal PR12-14-001
 - Ongoing study with EIC kinematics

I.C. Cloët, W. Bentz, A.W. Thomas, Phys. Lett. B 642, 210-217 (2006)

Techniques to Produce Polarized Lithium Beams

Previous Polarized Lithium Ion Sources

Polarized ⁶Li and ⁷Li Sources at 80s/90s

- The idea was realized in 80s/90s
 - University of Wisconsin, Madison

G.S. Masson, T. Wise, P.A. Quin, W. Haeberli, NIM A242, 196-200 (1986)

Florida State University (OPPLIS)

E.G. Myers, A.J. Mendez, B.G. Schmidt, K.W. Kemper, P.L. Kerr, E.L. Reber, NIM B79, 701-704 (1993)

HD-MPI (Heidelberg MP tandem)

D. Krämer et al., Nuclear Instruments and Methods in Physics Research 220 (1984) 123-132.

H. Jänsch et al., Nuclear Instruments and Methods in Physics Research A254 (1987) 7-12.

- Polarization techniques
 - Stern-Gerlach system
 - Optical pumping

Optical Pumping of Lithium

- Polarize lithium atom beam
 - With laser at ≈671 nm
 - High polarization achieved with the laser power of about 30~35 mW

 $\sigma^{+} \Delta m_{F} = +1$ $\sigma^{-} \Delta m_{F} = -1$ F = 3/2 F = 1/2 $m_{F} = -3/2$ $m_{F} = -3/2$ $m_{F} = -3/2$ $m_{F} = 3/2$ $m_{F} = 3/2$

For simplicity, only showing decays from this state

Survived state after many cycles

Nuclear vector pol.: $P_Z = N_1 - N_{-1}$ Nuclear tensor pol.: $P_{ZZ} = 1 - 3N_0$

L.W. Anderson, G.A. Nimmo, Phys. Rev. Lett. 42, 1520 (1979)

Proposed Polarized Lithium Sources for EIC

- Development of polarized ⁶Li and ⁷Li sources at Argonne
 - Optical pumping using modern solid-state lasers

Development of Polarized Lithium Sources at Argonne

Collobaration between ANL and UKY

A Growing Collaboration

- Collaboration since 2022/09
- Supported by Argonne LDRD, future support from DOE EPSCoR

Argonne National Laboratory

Chao Peng Assistant Physicist

Shivangi Prasad Postdoc

Kevin Bailey Engineer

Whitney Armstrong Assistant Physicist

Zein-Eddine Meziani Group Leader MEP

Thomas O'Conno Engineer

Project Goals and Milestones

- GOAL (Phase 1): Produce polarized Lithium-ion beam and precisely determine its polarization
- MILESTONES:
- Done ✓ Build the system and produce Lithium vapor beam Vaporizing oven, convergence-divergence nozzle, and vacuum system were built in this summer
- Prog. > Study and optimize the beam profile with benchmarked simulation
 Two sets of hot-wire beam profile measurements were implemented, profile
 measurement data were taken and being studied with simulation
- Plan Polarize Lithium vapor beam and implement the Breit-Rabbi Polarimeter Acquired a single-frequency tunable laser at 671 nm (25 mW) + future booster Polarimeter design optimized by simulations
- Phase 2: Study the injection into the EBIS

Current Experimental Setup

RGA

Controlling computer (with EPICS)

Vacuum gauge

1st wire-scanner

End viewport (visual measurement)

2nd wire-scanner (will be installed)

CO2 Gas line (flushing chamber)

Oven and nozzle

Water lines

Temperature sensor

Vacuum pump

Vaporizing Oven Design

- Oven operates at around 850°C
 - ⁶Li vapor pressure ~7.6 mbar
 - Expected ⁶Li ion current $> 0.2 \mu A$, $\sim 10^{12}$ ions/sec
- Isolated crucible with a water-cooling shell
 - Crucible volume: ~2 cm³
 - Currently testing with Lithium Hydride (LiH)
 - Planned for replacement with pure Lithium
- Refilling feed-through

Convergence-Divergence Nozzle

- De Laval Nozzle
 - Replaceable
 - Fully contained in the heating filaments (prevent for clogging)
 - Convert the Lithium vapor into a non-divergent beam

- 2-mm-diameter throat
- Initial design from Computational Fluid Dynamics (CFD) simulation
- Will be further optimized after benchmarking simulation with real profile measurements

CFD Simulation for Nozzles

- Need a Non-divergent beam
 - Initial design with CFD simulation
 - benchmarking with real data
 - Plan to re-optimize the design

Beam Profile Measurement

- Benchmark the simulation.
- Design and preparation for the measurements
 - Visual measurement: transverse deposit of Li-6 beam
 - Wire scan measurement
 - lonizer-wire scan (thermal ionization)

Rhenium wire used in the measurement

Beam Profile Measurement

Wire-scan measurement

Visual measurement

Progress of the Development

- Vacuum system, oven, and nozzle were built
 - ✓ Dull nozzle (straight hole) + De Laval nozzle
 - ✓ Stable oven operation at 850°C
 - ✓ System operates at around $10^{-5} 10^{-6}$ torr
 - ✓ Lithium observed at RGA
 - ✓ Lithium deposit observed at the end viewport
- Hot-wire scan measurement
 - ✓ First set of measurement close to the nozzle exit
 - ✓ The second set will be at about 6 inches downstream
 - ✓ Test measurements (empty or with Lithium) of the first set
 - Analyzing the data and benchmarking simulations

Future: Polarization, Ionization, and Polarimetry

- Polarization: optical pumping
- Ionization: hot oxygenated Tungsten surface
- Breit-Rabbi polarimeter
 - Precision polarization measurement
 - Simulation package (Pytomic) developed from ANL LDRD

Summary

- We are developing polarized ⁶Li and ⁷Li sources for EIC
 - Collaborated work between ANL and UKY (may grow in the future)
 - Rich physics program with the new polarized ions beyond A=3
 - Revival of old techniques with modern technologies
- Current status of the development
 - Major parts of the system were constructed and assembled
 - Lithium vapor beam produced
 - Beam profile measurements conducted
 - Simulation is being benchmarked and further optimization is expected
 - Plan to start the optical pumping(solid-state laser at 671 nm acquired)

THANK YOU!

This work is supported by the ANL LDRD Project 2023-0157 and by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. Future support from DOE EPSCoR (Award Number: DE-SC0025511).

Lithium 6 Vapor Pressure

- A gram of Lithium-6 should be more than enough
 - Semi-confined in the oven volume ~0.9 cubic cm
 - Assumed ideal gas law, 1100 K and 1 bar -> 0.06 mg of Li-6
 - Of course we are continuously sending out Li-6 through the nozzle
 - Fluid dynamics -> values of P, T, N are difficult to estimate

- Two extreme cases

- Lithium vapor pressure
 - J. Chem. Phys. 38, 1873 (1963); https://doi.org/10.1063/1.1733889
 - Isothermal expansion
 - 800°C (1073 K) 3.5 mbar
 - 850°C (1123 K) 7.6 mbar
 - 1174°C (1447 K) − 302 mbar
 - − 1324°C (1597 K) 1 bar

Oven and Nozzle Interface

- Nozzle throat inside the heating element
 - Prevent Li6 clog
- Mount with 6-inch vacuum tubes

