Polarized Gas Targets for Nuclear and Particle Physics

J. Maxwell

20th International Workshop on Polarized Sources, Targets and Polarimetry September 22th, 2024

Outline

 Internal Gas Targets Storage Cell Targets
 Optical Pumping Targets SEOP MEOP

Gases vs. Solids

Solid polarized targets can provide near 100% polarization at far higher density than can be achieved with any gas.

Why Choose a Polarized Gas Target?

- Available nuclei: different species (³He), nuclear corrections
- Dilution factor: Only 17% of NH₃ is polarizable protons
- Background: Windows, cryogens complicate high-precision measurements
- Spin Reversal: Internal targets flip at up to 100 Hz
- Total luminosity: long cells and higher beam current

Polarizing Nuclei is Hard

- Take the proton. It has a magnetic moment μ . Why not just line up the spins with a strong magnet?
- Up-down energy different is $2\mu B$, with $\mu_{\rm proton} = 9 \times 10^{-8} eV/T$
- At 10 T, thermal energy *kT* at room temperature is 14,000 times larger! Even at 0.3 K, still 14 times.

Electron Spin Is Our Powertool

- The electron's μ is 660 times larger!
- Use hyperfine coupling in atoms to polarize the nucleus

Outline

 Internal Gas Targets Storage Cell Targets
 Optical Pumping Targets SEOP MEOP

Beginnings of Polarized Gas Targets: Internal Targets

- Remember Stern-Gerlach? Spray atomic H or D through a sextupole.
- 4 spin states for H. To isolate (1):
 - Choose(1)
 - Use RF to flip (2) to (3)
 - Second sextupole to choose (1)
- 100% Vector P (and/or Tensor for D)
- Atomic Beam Source: jets with very low
- Storage cells coated with teflon used to

Beginnings of Polarized Gas Targets: Internal Targets

- Remember Stern-Gerlach? Spray atomic H or D through a sextupole.
- 4 spin states for H. To isolate (1):
 - Choose (1) (2
 - Use RF to flip 2 to 3
 - Second sextupole to choose (1)
- 100% Vector P (and/or Tensor for D)
- Atomic Beam Source: jets with very low density (10¹⁶ H/s), good for storage rings
- Storage cells coated with teflon used to increase target density. FILTEX at CERN, and VEPP-3 in Novosibirsk

Wisconsin ABS, Polarized H and D Target (CERN, HERMES, IUCF) 50 cm

Storage Cell Targets

SMOG2 Internal Target (LHCspin)

- Bring Spin Physics to the LHC!
- Fixed, internal target at LHCb with storage cell
- Storage ring, so low density is advantageous
- ANKE ABS from COSY, Jülich
- Cell splits in half to accommodate beam, suppress wake field effects
- Already run with unpolarized gases
- Talks Thursday, 11:00 (Lenisa, Engels)

Steffens, PSTP 2022

Storage Cell Targets

SMOG2 Internal Target (LHCspin)

- Bring Spin Physics to the LHC!
- Fixed, internal target at LHCb with storage cell
- Storage ring, so low density is advantageous
- ANKE ABS from COSY, Jülich
- Cell splits in half to accommodate beam, suppress wake field effects
- Already run with unpolarized gases
- Talks Thursday, 11:00 (Lenisa, Engels)

Steffens, PSTP 2022

Storage Cell Targets

SMOG2 Internal Target (LHCspin)

- Bring Spin Physics to the LHC!
- Fixed, internal target at LHCb with storage cell
- Storage ring, so low density is advantageous
- ANKE ABS from COSY, Jülich
- Cell splits in half to accommodate beam, suppress wake field effects
- Already run with unpolarized gases
- Talks Thursday, 11:00 (Lenisa, Engels)

Steffens, PSTP 2022

Outline

 Internal Gas Targets Storage Cell Targets
 Optical Pumping Targets SEOP MEOP

Optical Pumping of Helium

- OP: Kastler in 1952 (Nobel 1966), key to lasers
- Energy to first excited electronic state is 20 eV!
- This corresponds to a wavelength of around 60 nm, not practical for driving polarizing transitions.
- We have to optically pump other electronic states, then transfer to the helium nucleus.

Polarization of Gas via Optical Pumping

- Spin-exchange: Evaporate Alkalis into the Gas, Pump Them
- Metastability-exchange: Excite Electrons to 2S, Pump Them

Optical Pumping of Helium

- OP: Kastler in 1952 (Nobel 1966), key to lasers
- Energy to first excited electronic state is 20 eV!
- This corresponds to a wavelength of around 60 nm, not practical for driving polarizing transitions.
- We have to optically pump other electronic states, then transfer to the helium nucleus.

Polarization of Gas via Optical Pumping

- Spin-exchange: Evaporate Alkalis into the Gas, Pump Them
- Metastability-exchange: Excite Electrons to 2S, Pump Them

Optical Pumping of Helium

- OP: Kastler in 1952 (Nobel 1966), key to lasers
- Energy to first excited electronic state is 20 eV!
- This corresponds to a wavelength of around 60 nm, not practical for driving polarizing transitions.
- We have to optically pump other electronic states, then transfer to the helium nucleus.

Polarization of Gas via Optical Pumping

- Spin-exchange: Evaporate Alkalis into the Gas, Pump Them
- Metastability-exchange: Excite Electrons to 2S, Pump Them

Why Polarized Helium 3?

• How do we make polarized neutron targets and beam sources?

- S-state ³He: nuclear spin carried by the neutron nearly 90% of the time
- Polarized spin asymmetries: ${}^{3}\overrightarrow{\text{He}}$ good surrogate for \vec{n}
- ³He's magnetic moment close to n_i easier spin manipulation in accelerator
- Crucial cross-check against measurements on " \vec{n} " from ND₃

- Magnetometers and Co-magnetometers
- NMR and Medical Imaging
- Neutron Spin Filters
- Fuel for polarized fusion efforts

- Magnetometers and Co-magnetometers
- NMR and Medical Imaging
- Neutron Spin Filters
- Fuel for polarized fusion efforts

- Magnetometers and Co-magnetometers
- NMR and Medical Imaging
- Neutron Spin Filters
- Fuel for polarized fusion efforts

- Magnetometers and Co-magnetometers
- NMR and Medical Imaging
- Neutron Spin Filters
- Fuel for polarized fusion efforts

- Done in 1960 with lamps, practical in 1987 (Chupp *et al.* 1987)
- Pump Rb in \sim 30 G holding field
 - 795 nm laser light: $5S_{1/2} \rightarrow 5P_{1/2}$
 - N₂ for quench collisions to repopulate the ground state
- Spin exchange polarizes K, then ³He (or Xe)
- Slow, but pressure up to 13 atm
- Polarize in oven, transfer target cell
- $P_{
 m Rb}\sim 95$ %, $P_{
 m ^3He}\sim 80\%$
 - In-beam reduced to $P_{^3{
 m He}}\sim 60\%$
 - Longitudinal or transverse

Optical Pumping Targets

SEOP

- Done in 1960 with lamps, practical in 1987 (Chupp *et al.* 1987)
- Pump Rb in \sim 30 G holding field
 - 795 nm laser light: $5S_{1/2} \rightarrow 5P_{1/2}$
 - N₂ for quench collisions to repopulate the ground state
- Spin exchange polarizes K, then ³He (or Xe)
- Slow, but pressure up to 13 atm
- Polarize in oven, transfer target cell
- $P_{
 m Rb}\sim 95$ %, $P_{
 m ^3He}\sim 80\%$
 - In-beam reduced to $P_{^3{
 m He}}\sim 60\%$
 - Longitudinal or transverse

PSTP - Sep 22, 2024

SEOP

- Done in 1960 with lamps, practical in 1987 (Chupp *et al.* 1987)
- Pump Rb in \sim 30 G holding field
 - 795 nm laser light: $5S_{1/2} \rightarrow 5P_{1/2}$
 - N₂ for quench collisions to repopulate the ground state
- Spin exchange polarizes K, then ³He (or Xe)
- Slow, but pressure up to 13 atm
- Polarize in oven, transfer target cell
- $P_{
 m Rb}\sim 95$ %, $P_{
 m ^3He}\sim 80\%$
 - In-beam reduced to $P_{^3{
 m He}}\sim 60\%$
 - Longitudinal or transverse

Optical Pumping Targets

SEOP

- Done in 1960 with lamps, practical in 1987 (Chupp *et al.* 1987)
- Pump Rb in \sim 30 G holding field
 - 795 nm laser light: $5S_{1/2} \rightarrow 5P_{1/2}$
 - N₂ for quench collisions to repopulate the ground state
- Spin exchange polarizes K, then ³He (or Xe)
- Slow, but pressure up to 13 atm
- Polarize in oven, transfer target cell
- $P_{\mathsf{Rb}}\sim 95$ %, $P_{^3\mathsf{He}}\sim 80\%$
 - In-beam reduced to $P_{^{3}\mathrm{He}}\sim 60\%$
 - Longitudinal or transverse

Tadepalli

JLab 6 GeV Polarized ³He: 13 Experiments with SEOP in Hall A

Neutron Spin Structure

- Valence structure: g_1^n , A_1^n
- Higher-twist: g_2^n , d_2^n
- Sum rules (GDH)
- Quark-Hadron duality

- Transversity, TMDs
- G_M^n , G_E^n
- 2- γ exchange, Inclusive A_y
- Quasi-elastic A_x , A_z

JLab 6 GeV Polarized ³He: 13 Experiments with SEOP in Hall A

Neutron Spin Structure

- Valence structure: g_1^n , A_1^n
- Higher-twist: g_2^n , d_2^n
- Sum rules (GDH)
- Quark-Hadron duality

- Transversity, TMDs
- G_M^n , G_E^n
- 2- γ exchange, Inclusive A_y
- Quasi-elastic A_x , A_z

JLab 6 GeV Polarized ³He: 13 Experiments with SEOP in Hall A

Neutron Spin Structure

- Valence structure: g_1^n , A_1^n
- Higher-twist: g_2^n , d_2^n
- Sum rules (GDH)
- Quark-Hadron duality

- Transversity, TMDs
- G_M^n , G_E^n
- 2- γ exchange, Inclusive A_y
- Quasi-elastic A_x , A_z

JLab 6 GeV Polarized ³He: 13 Experiments with SEOP in Hall A

Neutron Spin Structure

- Valence structure: g_1^n , A_1^n
- Higher-twist: g_2^n , d_2^n
- Sum rules (GDH)
- Quark-Hadron duality

- Transversity, TMDs
- G_M^n , G_E^n
- 2- γ exchange, Inclusive A_y
- Quasi-elastic A_x , A_z

JLab 6 GeV Polarized ³He: 13 Experiments with SEOP in Hall A

Neutron Spin Structure

- Valence structure: g_1^n , A_1^n
- Higher-twist: g_2^n , d_2^n
- Sum rules (GDH)
- Quark-Hadron duality

- Transversity, TMDs
- G_M^n , G_E^n
- 2- γ exchange, Inclusive A_y
- Quasi-elastic A_x , A_z

JLab 6 GeV Polarized ³He: 13 Experiments with SEOP in Hall A

Neutron Spin Structure

- Valence structure: g_1^n , A_1^n
- Higher-twist: g_2^n , d_2^n
- Sum rules (GDH)
- Quark-Hadron duality

- Transversity, TMDs
- G_M^n , G_E^n
- 2- γ exchange, Inclusive A_y
- Quasi-elastic A_x , A_z

JLab 6 GeV Polarized ³He: 13 Experiments with SEOP in Hall A

Neutron Spin Structure

- Valence structure: g_1^n , A_1^n
- Higher-twist: g_2^n , d_2^n
- Sum rules (GDH)
- Quark-Hadron duality

- Transversity, TMDs
- G_M^n , G_E^n
- 2- γ exchange, Inclusive A_y
- Quasi-elastic A_x , A_z

Polarized ³He for 12 GeV: 7 Approved Experiments

Spin Structure in Hall C

- E12-06-110: *A*₁ⁿ
- E12-06-121: g_2^n , d_2^n
- SuperBigBite in Hall A
 - E12-09-018: Transverse SIDIS
 - E12-09-016: *G*^{*n*}_{*E*}, *G*^{*n*}_{*M*}
- SoLID SIDIS TMDs
 - E12-10-006: Transverse 3He
 - E12-11-007: Longitudinal 3He
 - Di-hadron, Inclusive A_y

Polarized ³He for 12 GeV: 7 Approved Experiments

Spin Structure in Hall C

- E12-06-110: *A*₁ⁿ
- E12-06-121: g_2^n , d_2^n

SuperBigBite in Hall A

- E12-09-018: Transverse SIDIS
- E12-09-016: *G*^{*n*}_{*E*}, *G*^{*n*}_{*M*}

SoLID SIDIS TMDs

- E12-10-006: Transverse 3He
- E12-11-007: Longitudinal 3He
- Di-hadron, Inclusive A_y

Polarized ³He for 12 GeV: 7 Approved Experiments

Spin Structure in Hall C

- E12-06-110: *A*₁ⁿ
- E12-06-121: g_2^n , d_2^n
- SuperBigBite in Hall A
 - E12-09-018: Transverse SIDIS
 - E12-09-016: *G*^{*n*}_{*E*}, *G*^{*n*}_{*M*}
- SoLID SIDIS TMDs
 - E12-10-006: Transverse 3He
 - E12-11-007: Longitudinal 3He
 - Di-hadron, Inclusive A_y

Polarized ³He for 12 GeV: 7 Approved Experiments

Spin Structure in Hall C

- E12-06-110: *A*₁ⁿ
- E12-06-121: g_2^n , d_2^n
- SuperBigBite in Hall A
 - E12-09-018: Transverse SIDIS
 - E12-09-016: G_E^n , G_M^n

SoLID SIDIS TMDs

- E12-10-006: Transverse 3He
- E12-11-007: Longitudinal 3He
- Di-hadron, Inclusive A_y

Polarized ³He for 12 GeV: 7 Approved Experiments

Spin Structure in Hall C

- E12-06-110: *A*₁ⁿ
- E12-06-121: g_2^n , d_2^n
- SuperBigBite in Hall A
 - E12-09-018: Transverse SIDIS
 - E12-09-016: G_{E}^{n} , G_{M}^{n}

SoLID SIDIS TMDs

- E12-10-006: Transverse 3He
- E12-11-007: Longitudinal 3He
- Di-hadron, Inclusive A_y

Polarized ³He for 12 GeV: 7 Approved Experiments

Spin Structure in Hall C

- E12-06-110: A_1^n
- E12-06-121: g_2^n , d_2^n

SuperBigBite in Hall A

- E12-09-018: Transverse SIDIS
- E12-09-016: G_E^n , G_M^n

SoLID SIDIS TMDs

- E12-10-006: Transverse 3He
- E12-11-007: Longitudinal 3He
- Di-hadron, Inclusive A_y

Polarized ³He for 12 GeV: 7 Approved Experiments

Spin Structure in Hall C

- E12-06-110: *A*₁ⁿ
- E12-06-121: g_2^n , d_2^n
- SuperBigBite in Hall A
 - E12-09-018: Transverse SIDIS
 - E12-09-016: G_E^n , G_M^n
- SoLID SIDIS TMDs
 - E12-10-006: Transverse 3He
 - E12-11-007: Longitudinal 3He
 - Di-hadron, Inclusive A_y

Polarized ³He for 12 GeV: 7 Approved Experiments

Spin Structure in Hall C

- E12-06-110: *A*₁ⁿ
- E12-06-121: g_2^n , d_2^n

SuperBigBite in Hall A

- E12-09-018: Transverse SIDIS
- E12-09-016: G_E^n , G_M^n

SoLID SIDIS TMDs

- E12-10-006: Transverse 3He
- E12-11-007: Longitudinal 3He
- Di-hadron, Inclusive A_y

SEOP Improvements

- Hybrid cell in the 2000's, Rb to K to He, faster spin exchange
- Narrow line-width lasers
- Cell Improvements
 - 40 cm to 60 cm long
 - Increase to 45 μ A beam
 - Added convection to reduce polarization gradient from beam
 - Added air cooling to glass windows (metal windows to come)
- Work by JLab 3He group, UVa, W&M, Kentucky, Temple

SEOP Improvements

- Hybrid cell in the 2000's, Rb to K to He, faster spin exchange
- Narrow line-width lasers
- Cell Improvements
 - 40 cm to 60 cm long
 - Increase to 45 μ A beam
 - Added convection to reduce polarization gradient from beam
 - Added air cooling to glass windows (metal windows to come)
- Work by JLab 3He group, UVa, W&M, Kentucky, Temple

SEOP Improvements

- Hybrid cell in the 2000's, Rb to K to He, faster spin exchange
- Narrow line-width lasers
- Cell Improvements
 - 40 cm to 60 cm long
 - Increase to 45 μ A beam
 - Added convection to reduce polarization gradient from beam
 - Added air cooling to glass windows (metal windows to come)
- Work by JLab 3He group, UVa, W&M, Kentucky, Temple

JLab 3He Group

SEOP Improvements

- Hybrid cell in the 2000's, Rb to K to He, faster spin exchange
- Narrow line-width lasers
- Cell Improvements
 - 40 cm to 60 cm long
 - Increase to 45 μ A beam
 - Added convection to reduce polarization gradient from beam
 - Added air cooling to glass windows (metal windows to come)
- Work by JLab 3He group, UVa, W&M, Kentucky, Temple

JLab 3He Group

SEOP Improvements

- Hybrid cell in the 2000's, Rb to K to He, faster spin exchange
- Narrow line-width lasers
- Cell Improvements
 - 40 cm to 60 cm long
 - Increase to 45 μ A beam
 - Added convection to reduce polarization gradient from beam
 - Added air cooling to glass windows (metal windows to come)
- Work by JLab 3He group, UVa, W&M, Kentucky, Temple

Polarization-Weighted Luminosity for Various 3He Target Experiments

SEOP Polarimetry

- AFP-NMR
 - Sweep transverse RF (or holding field) through Larmor ν to flip spins
 - Watch with pickup coils
 - Relative measure needs calibration, but "non-invasive" during experiment
- Pulse-NMR
 - Use pulse of RF at Larmor ν to tilt spins
 - Watch precession and decay
- EPR
 - Watch resonance of alkali atoms
 - Flip ³He spins, alkali resonance frequency difference gives absolute measure
 - Used to calibrate NMR

JLab 3He Group

No Pain, No Gain: SEOP Challenges

- Glass choice crucial to reduce relaxation: Need very low permeability (GE-180)
- Very high laser power: 200 W means arrays and complicated optics
- Cell preparation/variation
- Hot, explodey cells in beam
- Larger cells bring complications: microfissures reduce polarization & integrity
- Talks Friday 11:00 (Presley, Jackson)

T. Gentile with a Neutron Spin Filter Cell

- Glass choice crucial to reduce relaxation: Need very low permeability (GE-180)
- Very high laser power: 200 W means arrays and complicated optics
- Cell preparation/variation
- Hot, explodey cells in beam
- Larger cells bring complications: microfissures reduce polarization & integrity
- Talks Friday 11:00 (Presley, Jackson)

- Glass choice crucial to reduce relaxation: Need very low permeability (GE-180)
- Very high laser power: 200 W means arrays and complicated optics
- Cell preparation/variation
- Hot, explodey cells in beam
- Larger cells bring complications: microfissures reduce polarization & integrity
- Talks Friday 11:00 (Presley, Jackson)

- Glass choice crucial to reduce relaxation: Need very low permeability (GE-180)
- Very high laser power: 200 W means arrays and complicated optics
- Cell preparation/variation
- Hot, explodey cells in beam
- Larger cells bring complications: microfissures reduce polarization & integrity
- Talks Friday 11:00 (Presley, Jackson)

- Glass choice crucial to reduce relaxation: Need very low permeability (GE-180)
- Very high laser power: 200 W means arrays and complicated optics
- Cell preparation/variation
- Hot, explodey cells in beam
- Larger cells bring complications: microfissures reduce polarization & integrity
- Talks Friday 11:00 (Presley, Jackson)

Metastability Exchange Optical Pumping

- 1963, Colgrove *et al* (TI)
- Pure 3 He, \sim 30 G field
- Discharge promotes states to 2³S₁
- Laser drives polarization
- Collisions between 2³S₁ and ground state polarize nuclei
- Requires ~2 mbar
- Rate drops with temperature

Metastability Exchange Optical Pumping

- 1963, Colgrove et al (TI)
- Pure 3 He, \sim 30 G field
- Discharge promotes states to 2³S₁
- Laser drives polarization
- Collisions between 2³S₁ and ground state polarize nuclei
- Requires \sim 2 mbar
- Rate drops with temperature

Metastability Exchange Optical Pumping

- 1963, Colgrove et al (TI)
- Pure 3 He, \sim 30 G field
- Discharge promotes states to 2³S₁
- Laser drives polarization
- Collisions between 2³S₁ and ground state polarize nuclei
- Requires \sim 2 mbar
- Rate drops with temperature

Colgrove, Schearer, Walters, 1964

Overcoming the Pressure Limitation of MEOP

- Increasing the gas pressure crucial for scattering, medical imaging
- Toepler pump at MAMI
- Titanium piston pumps
- Peristaltic pumps used in a system to ship polarized gas
- Cryogenic cooling of gas to increase density

Overcoming the Pressure Limitation of MEOP

- Increasing the gas pressure crucial for scattering, medical imaging
- Toepler pump at MAMI
- Titanium piston pumps
- Peristaltic pumps used in a system to ship polarized gas
- Cryogenic cooling of gas to increase density

Overcoming the Pressure Limitation of MEOP

- Increasing the gas pressure crucial for scattering, medical imaging
- Toepler pump at MAMI
- Titanium piston pumps
- Peristaltic pumps used in a system to ship polarized gas
- Cryogenic cooling of gas to increase density

G. Collier

Overcoming the Pressure Limitation of MEOP

- Increasing the gas pressure crucial for scattering, medical imaging
- Toepler pump at MAMI
- Titanium piston pumps
- Peristaltic pumps used in a system to ship polarized gas
- Cryogenic cooling of gas to increase density

G. Collier

MEOP Double-Cell Cryo Target: Bates 88-02

- Quasi-elastic asymmetries in 1988, 1993
- MEOP pumping cell at 2 mbar, 300 K, 30 G: 40% in-beam polarization
- Cu target cell at 2 mbar, 17 k
- Cu foil beam windows (4.6 μ m)
- Cold surfaces coated with N₂ to reduce depolarization from wall interactions
- 7.2×10^{32} ³He/cm²/s Luminosity w/ 10 μ A

High Magnetic Field Optical Pumping

- OP not historically done at high B
 - SEOP: Increasing wall relaxation
 - MEOP: Weak hyperfine coupling ...?
- Kastler-Brossel Lab at ENS in Paris found by increasing *B*₀, MEOP effective at higher pressures (Nikiel-Osuchowska *et al*, Eur. Phys. J.D., 2013.)
- 5 T: near 60% at 100 mbar!
- Zeeman splitting separates states for laser pumping
 - Decouples relaxation paths
 - Creates probe peaks (Suchanek et al., Euro Phys JST, 2007.)

High Magnetic Field Optical Pumping

- OP not historically done at high B
 - SEOP: Increasing wall relaxation
 - MEOP: Weak hyperfine coupling ...?
- Kastler-Brossel Lab at ENS in Paris found by increasing *B*₀, MEOP effective at higher pressures (Nikiel-Osuchowska *et al*, Eur. Phys. J.D., 2013.)
- 5 T: near 60% at 100 mbar!
- Zeeman splitting separates states for laser pumping
 - Decouples relaxation paths
 - Creates probe peaks (Suchanek *et al.*, Euro Phys JST, 2007.)

He3 Absorption Spectrum at 0.01T

High Magnetic Field Optical Pumping

- OP not historically done at high B
 - SEOP: Increasing wall relaxation
 - MEOP: Weak hyperfine coupling ...?
- Kastler-Brossel Lab at ENS in Paris found by increasing *B*₀, MEOP effective at higher pressures (Nikiel-Osuchowska *et al*, Eur. Phys. J.D., 2013.)
- 5 T: near 60% at 100 mbar!
- Zeeman splitting separates states for laser pumping
 - Decouples relaxation paths
 - Creates probe peaks (Suchanek *et al.*, Euro Phys JST, 2007.)

He3 Absorption Spectrum at 1T

³He Transitions at Low Field

³He Transitions at Low Field

³He Transitions at Low Field

³He Transitions at High Field

³He Transitions at High Field

³He Transitions at High Field

High Magnetic Field MEOP for EIC

- High field MEOP techniques already being applied for nuclear physics
- BNL-MIT: Polarized ³He Ion Source for EIC
- BNL's Electron Beam Ion Source operates at 5 T
- MEOP within 5 T field, transfer into EBIS for ionization and extraction
- Tests between 2 to 4 T gave nearly 90% at 1.3 mbar (Maxwell *et al.*, NIM A **959**, 2020)
- Talk Monday 11:00 (Wuerfel)

High Magnetic Field MEOP for EIC

- High field MEOP techniques already being applied for nuclear physics
- BNL-MIT: Polarized ³He Ion Source for EIC
- BNL's Electron Beam Ion Source operates at 5 T
- MEOP within 5 T field, transfer into EBIS for ionization and extraction
- Tests between 2 to 4 T gave nearly 90% at 1.3 mbar (Maxwell et al., NIM A 959, 2020)
- Talk Monday 11:00 (Wuerfel)

Results at 1.3 mbar

An Opportunity in Hall B's CLAS12

- CEBAF Large Acceptance Spectrometer for Jefferson Lab's 12 GeV upgrade
 - High luminosity electron scattering
 - Multi-particle final state response
- PR12-20-002: A program of spin-dependent electron scattering using a polarized ³He target in CLAS12
 - P_T -dependence of n longitudinal spin structure
 - Nuclear corrections to SIDIS
 - Conditionally approved with A- rating
 - Spokespeople: Avakian, Maxwell, Milner, Nguyen
- 5T solenoid in interaction region
- Novel target needed for standard config

Creating a New Target for CLAS12

Double-Cell Cryo Target

- Polarize at 300 K
- Transfer to 5 K target cell
- Density increase 60×

High Field MEOP

- High Polarization (~60%)
- High magnetic fields (5 T)
- Pressure increase 100×
- By combining established technologies: a new polarized target (Maxwell, Milner, NIM A, 2021.)
- Achieve 5.4 amg, roughly half JLab SEOP target gas density
- Polarize within 5 T solenoid: CLAS12 standard configuration
- Talks on Thursday, 11:00 (Pandey, Lu)

Proposed Target

293 K Pumping Cell

- 200 cm³ borosilicate glass
- MEOP to 60% polarization
- Annular cylindrical volume

5 K Target Cell

- 100 cm³, 20 cm long aluminum cell
- Cooled by LHe heat exchanger
- Luminosity of 2.7×10^{34} nuc/cm²/s at $0.5 \,\mu\text{A}$
MEOP

Proposed Target

293 K Pumping Cell

- 200 cm³ borosilicate glass
- MEOP to 60% polarization
- Annular cylindrical volume

5 K Target Cell

- 100 cm³, 20 cm long aluminum cell
- Cooled by LHe heat exchanger
- Luminosity of 2.7×10^{34} nuc/cm²/s at $0.5 \,\mu$ A

Overview

- Polarized gas targets are crucial tools for spin physics, and important counterparts to polarized solid targets
- Development furthers technologies with wide and increasing use in other fields
- For further reading, excellent review articles:
 - Steffens, Haeberli. Rep. Prog. Phys. 66 (2003)
 - Gentile, Nacher, Saam, Walker. Rev. Mod. Phys. 89 (2017)

Special thanks to those whose papers and slides I've mined to make this talk, including:

• Steffens, Haeberli, Cates, Tadepalli, Jackson, Henry, Gentile, Nacher, Milner

Thank you for your attention!

Metastability Exchange and Spin Exchange Optical Pumping

SEOP

- Pump: alkali metals in mixture
- Transfer: spin exchange
- Low pumping rate
- Walls carefully selected
- Needs oven (473 K)
- 100 W laser typical
- Large pressure range (1 to 13 bar)

MEOP

- Pump: metastable population
- Transfer: metastability exchange
- High pumping rate
- Less sensitive to wall interactions
- Temperature above 100 K
- 4 W laser typical
- Limited pressure (~1 mbar)
- MEOP pumping rate starts 9 orders faster, minus 4 for higher alkali density, and minus 4 for lower pressure ⇒ MEOP about 1 order of magnitude faster

Depolarization Mechanisms

- Wall relaxation on Al: H₂ coatings yield days long relaxation at 4 K (Lefevre-Seguin, Low Temp. P. 1988.)
- Depolarization from transverse magnetic field gradients, dependent on pressure, temperature
- Beam produces ³He₂⁺ ions: increase with density, but decrease with higher field. (Bonin, PRA, 1988)

Depolarization Mechanisms

- Wall relaxation on Al: H₂ coatings yield days long relaxation at 4 K (Lefevre-Seguin, Low Temp. P. 1988.)
- Depolarization from transverse magnetic field gradients, dependent on pressure, temperature
- Beam produces ³He₂⁺ ions: increase with density, but decrease with higher field. (Bonin, PRA, 1988)

Depolarization Mechanisms

- Wall relaxation on Al: H₂ coatings yield days long relaxation at 4 K (Lefevre-Seguin, Low Temp. P. 1988.)
- Depolarization from transverse magnetic field gradients, dependent on pressure, temperature
- Beam produces ³He₂⁺ ions: increase with density, but decrease with higher field. (Bonin, PRA, 1988)

