HKS Target Design and Status

David Meekins

22 March 2024

Design Status

- Design is in concept stage and will be for some time
 - Target group does not have resources to develop a comprehensive design at this time.
 - Solid target concept complete
 - Gas target concept is complete as well
 - Concepts will need to include backward angle acceptance requirements which have yet to be addressed.
- Best to design and fabricate one system
 - System with both solid and fluid targets
 - This is more work to install but could be done in two phases if needed
- Both systems require cryogenic cooling
 - Pb and Li both need this to meet beam current requirements
 - He and Hydrogen gas cells will need it to reach proposed densities
- Fluid systems are designed to appropriate Codes and Standards
 - Somewhat limiting for the cell design (wall thickness)

Concept Design

- There has been no real progress here
- Base motion system and top end design on PREX/CREX target
 - Plenty of range for all targets needed for
- Custom chamber will be needed
- Long transfer lines will be needed.
 - Base this design on existing design for PREX
- Cooled solid target ladder/heat exchanger
- Cooled cells (not shown)
 - Fed gas from gas panels in Hall C

"Original" Proposal (circa 2022)

- Solid targets
 - Some basic solid targets (these targets are relatively easy)
 - C, Al, B4C etc.
 - More Challenging (these targets require special handling/cooling)
 - Lead, Ca40,48, Li6, Pb etc.
- Gas Cells
 - H2, He3 and He4
 - Tuna can with vertical axis perpendicular to the beam
 - Diameter is 20 cm
 - Total Al thickness 162 mg/cm^2
 - Gas pressures low

Optimization of the Cells

- Assumptions for improvement
 - Thinner cells walls
 - Higher fluid densities
 - Smaller diameter
- Plan to use actively filled cells
 - This is contrast to the tritium target were the cells were filled with a static pressure
 - Two gas isotopes can be used concurrently
 - One gas species at a time (e.g., H2 and D2 OR He3 and He4)
- Requires gas handling system
 - This might need to be in a second phase as schedule permits

Solid Targets

- Lead and calcium will present challenges
 - Lead will need to be cryogenically cooled with good thermal conductivity
 - Realistic thickness will need to be at least 0.1 mm
 - Ca and Li targets will need special handling
 - Ca48 stock at Jefferson Lab is highly compromised
 - Recommend purchasing new Ca48 foil (\$50K to \$100K)
- Other solid targets are relatively simple to work with
 - Proposed thickness are OK
 - Multi-foil: reduce to +/- 5 cm to closer match cell length
- Design path:
 - Combine latest Hall C solid target ladder with PREX/CREX motion system and T2 target style heat sink.

Solid Target Ladder

- Solid target design concept
- All components are aluminum 7075
- Target material is clamped into the frame with sufficient force to ensure good Kc
 - Threaded clamp screws into heat sink
 - Nuclear grade anti-seize is used to enhance Kc and prevent galling
 - Clamp ring prevents spinning of the target foil
- Proven to work will all targets except lead
 - Preliminary calcs show design is acceptable for lead as well
- This design does not meet the backward angle acceptance requirement and will have to be adjusted.

Time Line

- Currently the Target Group is over committed
 - We are working to increase our staff but this will likely not have a positive near term affect
- It MAY be possible for some Target Group design team members to work with Hall C designers to develop SOME designs.
 - Possibilities include scattering chamber and support structures
- Cannot give any firm estimates at this time

Summary

- A completely new cryogenic target will be required to be located ~11 m downstream from the nominal pivot.
 - Current gas handling panels should be sufficient for HKS target
 - New electrical installations will be required
 - New gas lines will be needed
- The cryogenic distribution system will require some new transfer lines in excess of 40 ft. These will need to be fabricated somewhere (JLAB or ???)
- We will need to work with Hall engineers/designers to layout target services and design the scattering chamber.
 - Hall C design team has already reached out.
- At the moment the target group does not have the resources to complete a final design or substantially develop the concept
 - It is not clear when the resources will be available either although some design resources may be available near the end of 2024.