Simulation study of the next hypernuclear spectroscopy experiments on $^{40,48}_{\Lambda}K$ at JLab

Tatsuhiro Ishige 2nd year of MC, Tohoku University

2024/Mar/22

Contents

- Optimization of experimental conditions by Geant4 simulation
 HES installed angle, target thickness, beam intensity
- Estimated missing mass spectrum of $^{40,48}_{\Lambda}K$

Setup of the next experiment

- HES and HKS used in previous experiment
- Introducing PCS (Pair of Charge Separation magnets) for the first time
 - Enables to avoid background with forward angle

I optimized the experimental conditions for this setup.

Visualization of HKS simulation

Geant4 simulation

- Simulation consists of particle generator, setup, and analysis
- It can reproduce dataset of reconstructed momentum
- Process of generating data goes from step 1 to step 4

Experimental conditions to be optimized

- Developed estimating missing mass spectrum by Geant4 simulation (skip details)
- → Optimized experimental conditions following tables

Condition	Advantage	Disadvantage
HES installed angle	Hypernuclear yield	Accidental background
Target thickness	Hypernuclear yield	B _A resolution , accidental background
Beam intensity	Hypernuclear yield	Accidental background

Condition 1. HES installed angle $\theta_{e'}$ Geometric limitation $(\theta_{e'} \ge 8 \text{ deg})$ **HES angle vs HES rate** je. Rate[1/s] SIMULATION **Pb208 Ca40** 1 MHz **C12** 10⁵ 2 10 6 **HES angle [deg]**

- Bremsstrahlung background increasing at forward angle
- Virtual photon flux increasing at forward angle
- Evaluation by geometric limitation, HES single rate

 \rightarrow Adopted 8 deg.

Condition 2. Target thickness

• Evaluation by peak significance of S_{Λ}

 Applied this analysis to other target thickness

Condition 2. Target thickness

Thickness vs peak significance of $^{40}_{\Lambda} {
m K}$

Thickness vs peak significance of ${}^{48}_{\Lambda}{ m K}$

In case of high intensity

 $-B_{\Lambda}$ (MeV)

- Same peak evaluation as in condition2
- limitation of detector rate up to 1 MHz $(\leq 50 \ \mu A)$

Condition 3. Beam intensity

(N+S significance (S/

Missing mass spectrum of $^{40}_{\Lambda}K$ after optimization

Ca40, 150 mg/cm² 50 µA, 228 h SIMULATION Estimated spectrum ĴΛ 600 + Estimated true BG d_{Λ} p_{Λ} 400 SA 200 Quasi-free Λ Background 0 └─ -20 -10 10 $-B_{\Lambda}$ (MeV)

• For peak of s_{Λ}

□ Energy resolution: 0.57 MeV (FWHM)

 Energy precision (32 keV from energy loss correction + 20 keV from fitting) : below 100 keV

Missing mass spectrum of $^{48}_{\Lambda}K$ after optimization

□ Energy resolution: 0.69 MeV (FWHM)

□ Energy precision (32 keV from energy loss correction + 30 keV from fitting): below 100 keV

Summary

- Optimized the experimental conditions □ HES angle: 8 deg
 - □ Target thickness: 100 150 mg/cm2
 - \square Beam intensity: 50 μ A

- Estimated missing mass spectral
 - □ Precision for Peak of s_{Λ} of $\frac{40,48}{\Lambda}$ K : below 100 keV
 - Energy resolution: 0.6 0.7 MeV
 - \square Peak significance: less than 5σ

Spectrometer

Optimal magnetic field

	PCS [T]	Q1 [T/m]	Q2 [T/m]	D [T]
HES	*	3.12	3.16	1.01
HKS	*	3.67	1.87	1.61

* Calculation is on-going for PCS field

- vertical direction)
- Optimal mag. fields is defined as (standard filed) x (optimal scaling value)

• Standard mag. field of each magnets are defined as max. at y=0 (center in

[12m] slgnA bilo2

HES performance

Result details

Condition 2. Thickness - S, N, S/N

• Definition of S, N:

$$\Box S = ax, N = bx^2$$
, w

• Signal to noise ratio passing at $(100 \text{ mg/cm}^2, 0.17)$

$$\Box \frac{S}{N} = \frac{a}{b} \frac{1}{x} = 17\frac{1}{x}$$

- Noise passing at (100 mg/cm²,780 Counts)
 - $D N = bx^2 = 0.078x^2$

- This function comes from only rate calculation formula
- \rightarrow It doesn't consider energy straggling at target

Condition 3. Beam intensity - N, S, S/N current dependency of SN ratio

Condition 3. Beam intensity - Purple line

Definition of S, N:

$$S = cI, N = dI^2,$$

Signal to noise ratio passing at (40 μ A,110 Counts)

$$\Box S = cI = \frac{11}{4}I$$

• Noise passing at (100 mg/cm²,900 Counts)

$$\square N = dI^2 = \frac{5}{16}I^2$$

Simulation details

Checking positron contamination

- experiment by visualization and number of hit
- experiment

Number of hit of positron

Simulation (detailed)

- The aim of simulation is to reproduce actual experiment and analysis data
- Simulation = Target part + Spectrometer part
- All simulations are made of Geant4 code
- Target simulation (generator)
 - ^{\Box} Pre-reaction simulation ... Process of *e* beam
 - $^{\square}$ Post-reaction simulation ... Process of e' & K^+
- Spectrometer simulation (detect + momentum reconstruction)
 - $^{\square}$ HES simulation ... Process of measuring e'
 - $^{\square}$ HKS simulation ... Process of measuring K^+

Target simulation

Implementation

 \Box Energy loss & Energy straggling of e

Implementation

 \Box Energy loss & Energy straggling of e', K^+

Angular dependency of virtual photon flux

^{\Box} Angular dependency of (γ^*, K^+) reaction

□ Hypernuclear cross section (Shell model calc.)

Kinematics algorithm of post reaction

Hypernuclear cross section considered

How to estimate in spectrometer simulation Momentum resolution Solid angle

 $p_{t} = a_{1}x_{FP} + a_{2}y_{FP} + a_{3}x'_{FP} + a_{4}y'_{FP} + a_{5}x_{FP}y_{FP} + \dots$ $= \sum_{a+b+c+d \le m} C(a, b, c, d)(x_{FP})^{a}(y_{FP})^{b}(x'_{FP})^{c}(y'_{FP})^{d}$

Determine coefficients $a_i (i = 0...l)$ by solving coefficient vector from

Number of possible combination of (a, b, c, d)

Number of event

$$\left| \begin{array}{c} \begin{pmatrix} p_t^{(1)} \\ p_t^{(2)} \\ \vdots \\ p_t^{(n)} \end{pmatrix} = \begin{pmatrix} x_{FP}^{(1)} & y_{FP}^{(1)} & \dots & (y_{FP}^{'(1)})^6 \\ x_{FP}^{(2)} & y_{FP}^{(2)} & \dots & (y_{FP}^{'(2)})^6 \\ \vdots & \vdots & \ddots & \vdots \\ x_{FP}^{(n)} & y_{FP}^{(n)} & \dots & (y_{FP}^{'(n)})^6 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} \right|$$

Actual value Value calculated above $p_t^{true} - p_t^{calc} = \Delta p/p$ p_t^{true}

Cone range of emitted particles distributed uniformly in angle range $\Delta\theta$, $\Delta\phi$

(II) Calculation of event rate- R_{BG} $R_{RG} = R_{HES} \times R_{HKS} \times t_{window} \quad (t_{window} = 2 \text{ [ns]})$ Background(BG) rate:

HKS rate Time window HES rate

$$R_{HES} = R_{beam} \times N_{target} \times \frac{d\sigma_{b}}{dt}$$
$$R_{beam}$$
: Number of beam electrons per sec
$$N_{target}$$
: Number of atoms in target
$$\frac{d\sigma_{brems}}{d\Omega}$$
: Cross section of bremsstrahlung

$\frac{brems}{d\Omega} \times \Delta \Omega_{e'} \times \epsilon_{HES,track} \times \epsilon_{HES,trig}$

 $\Delta\Omega_{\rho'}$: Solid angle of HES

 $\epsilon_{HES,track}$: Tracking efficiency of HES (from past exp.)

 $\epsilon_{HES,trig}$: Trigger efficiency of HES (from past exp.)

(II) Calculation of event rate - R_{RG} $R_{RG} = R_{HES} \times R_{HKS} \times t_{window} \quad (t_{window} = 2 \text{ [ns]})$ Background(BG) rate:

HES rate HKS rate **Time window**

, where R_i is $R_i = R_{beam} \times N_{target} \times \frac{d\sigma_i}{d\Omega} \times \Delta\Omega_K \times \epsilon_{i,reject}$ $i \in (\pi, p, K^+)$

Background at HES side

Electron as background

- Ionization of beam electron
- Bremsstrahlung of beam electron

The order of critical energy is 10 MeV
→Since Ee=2.240 GeV, brems. electrons are dominant background

Hyprenuclear yield rate:

$$R_{HYP} = R_{\gamma^*} \times N_{target} \times \frac{d\sigma_{(\gamma^*, K^+)}}{d\Omega} \times \Delta\Omega_K \times \epsilon_{eff}$$
where $R_{\gamma^*} = R_{beam} \times \Gamma \times \Delta E_{e'} \times \Delta\Omega_{e'}$

F: Virtual photon flux [1/(GeV · sr · electron)]
$$\frac{d\sigma_{(\gamma^*, K^+)}}{d\Omega}$$
: hypernuclear cross section by shell model ca
$$\Delta E_{e'}$$
: energy range of HES
$$\Delta\Omega_{e'}$$
: Solid angle of HES
$$\epsilon_{eff} \cdot \epsilon_{HES,track} \times \epsilon_{HES,track} \times \epsilon_{HKS,track} \times \epsilon_{K,reje}$$

(2) Calculation of event rate - N_{HYP}

alc.

ect

Setup condition (now)

Beam	Energy Ee [GeV]	2.240
	Resolution ∆Ee/Ee [GeV]	3×10 ⁻⁵
PCS+HES	Cent. Moment pe [GeV/c]	0.744
	Cent. Angle 0ee' [deg]	8
	Solid angle ΔΩe' [msr]	3.4
	Momentum resolution Δpe'/pe'	4.4×10 ⁻⁴
PSC+HKS	Cent. momentum pK [GeV/c]	1.2
	Cent. angle 0eK [deg]	15
	Solid angle $\Delta \Omega K$ [msr]	8.3
	Momentum resolution ΔpK/pK	2.9×10 ⁻⁴

Event rate (2023May)

Table 6: Updated request of beamtime.

Target	Beam	Target	Assumed	Expected	Num. of	Req.	B.G.	S/N	Comments
(Hyper	current	thickness	cross	yield	events	beamtime	rate		
Nucleus)	(μA)	(mg/cm^2)	section	(/h)		(hours)	(/MeV/h)		
			(nb/sr)						
$CH_2(\Lambda, \Sigma^0)$	2	500	1000	8.62	1000	120	0.03	290	Calibration
6 Li ($^{6}_{\Lambda}$ He)	50	100	10	—		—			Separate LoI
⁹ Be $({}^{9}_{\Lambda}$ Li)	50	100	10						Separate LoI
$^{11}B (^{11}_{\Lambda}Be)$	50	100	30						Separate LoI
$^{12}C(^{12}_{\Lambda}B)$	50	150	90	6.79	1100	168	1.20	5.67	Calibration
27 Al ($^{27}_{\Lambda}$ Mg)	50	150	60 *	1.98	330	168	1.77	1.87	Calibration
Subtotal						456			Calibration
40 Ca ($^{40}_{\Lambda}$ K)	50	150	50	1.13	520	456	2.41	0.47	Physics
48 Ca ($^{48}_{\Lambda}$ K)	50	150	50	0.94	520	552	1.89	0.50	Physics
Subtotal						1008			Physics
Total						1464			

* for $0s^{\Lambda} 9/2^+, 7/2^+$ doublet.

Energy loss correction (detailed)

標的	dE 分布の 全体カウント数 に対する割合	標的厚 [mg/cm ²]	δE_e [keV]	$\delta E_{e'} \ [{ m keV}]$	δE_K [keV]	
⁴⁰ Ca	60%	100	82	82	87	
		150	123	122	131	
		200	162	161	177	
⁴⁸ Ca	62%	50	34	34	36	
		100	70	70	74	
		150	107	106	113	
		200	141	140	153	

Fit loop analysis

