# Impact of a positron beam at JLab on the extraction of GPDs

# Hervé Dutrieux (William & Mary)

Some collaborators

William & Mary and JLab: K. Orginos, J. Karpie, C. Monahan, ... PARTONS @ Saclay and Warsaw: H. Moutarde, C. Mezrag, V. Bertone, P. Sznajder, ... Marseille: S. Zafeiropoulos

March 19th, 2024 - Positron Working Group Workshop - hldutrieux@wm.edu



Positron Working Group Workshop

1/18

- The deconvolution problem: example with gravitational form factors
- Impact of a positron beam

(間) (目) (見)

Els OQO

Spin-1/2 hadron, unpolarized quark GPDs  $H^q$  and  $E^q$  in the lightcone gauge [Müller et al, 1994], [Radyushkin, 1996], [Ji, 1997]

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle p_{2} \left| \bar{\psi}^{q} \left( -\frac{z}{2} \right) \gamma^{+} \psi^{q} \left( \frac{z}{2} \right) \left| p_{1} \right\rangle \right|_{z_{\perp}=0, \ z^{+}=0}$$

$$= \frac{1}{2P^{+}} \left( H^{q}(x,\xi,t) \bar{u}(p_{2}) \gamma^{+} u(p_{1}) + E^{q}(x,\xi,t) \bar{u}(p_{2}) \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} u(p_{1}) \right)$$
(1)

$$p_2 - p_1 = \Delta, \ t = \Delta^2, \ P = \frac{1}{2}(p_1 + p_2), \ \xi = -\frac{\Delta^+}{2P^+}.$$
 (2)



|                |                                 |      | ≣▶ K 悪 X 悪 la lo Q @ |
|----------------|---------------------------------|------|----------------------|
| Hervé Dutrieux | Positron Working Group Workshop | 3/18 |                      |

- More functions than in the inference of PDFs from DIS, with more kinematic dependences, non-analyticities, and a more difficult experimental access.
- When  $x \gg \xi$ , negligible asymmetry between incoming  $(x \xi)$  and outgoing  $(x + \xi)$  parton longitudinal momentum fraction  $\rightarrow$  smooth limit of GPDs

$$H(x,\xi,t,\mu^2) \approx H(x,0,t,\mu^2) \quad \text{for } x \gg \xi.$$
(3)

# Impact parameter distribution (IPD) [Burkardt, 2000]

$$I_{a}(x, \mathbf{b}_{\perp}, \mu^{2}) = \int \frac{\mathrm{d}^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{-i\mathbf{b}_{\perp} \cdot \Delta_{\perp}} F^{a}(x, 0, t = -\Delta_{\perp}^{2}, \mu^{2})$$
(4)

is the density of partons with plus-momentum x and transverse position  $\mathbf{b}_{\perp}$  from the center of plus momentum in a hadron  $\rightarrow$  hadron tomography

If one collects mostly information about  $x \sim \xi$ , important modelling issue in the  $\xi$  dependence to reach  $\xi = 0$ .

ELE SQO

Gravitational form factors (GFFs) of the energy-momentum tensor (EMT) [Ji, 1997]

## Gravitational form factors [Lorcé et al, 2017]

$$\langle p', s' | T^{\mu\nu}_{a} | p, s \rangle = \bar{u}(p', s') \left\{ \frac{P^{\mu}P^{\nu}}{M} A_{a}(t) + \frac{\Delta^{\mu}\Delta^{\nu} - \eta^{\mu\nu}\Delta^{2}}{M} C_{a}(t) + M\eta^{\mu\nu}\bar{C}_{a}(t) \right.$$

$$\left. + \frac{P^{\{\mu}i\sigma^{\nu\}\rho}\Delta_{\rho}}{4M} \left[ A_{a}(t) + B_{a}(t) \right] + \frac{P^{[\mu}i\sigma^{\nu]\rho}\Delta_{\rho}}{4M} D^{GFF}_{a}(t) \right\} u(p, s)$$

$$(5)$$

$$\int_{-1}^{1} \mathrm{d}x \, x \, H^{q}(x,\xi,t,\mu^{2}) = A_{q}(t,\mu^{2}) + 4\xi^{2} C_{q}(t,\mu^{2}) \tag{6}$$

$$\int_{-1}^{1} \mathrm{d}x \, x \, E^{q}(x,\xi,t,\mu^{2}) = B_{q}(t,\mu^{2}) - 4\xi^{2} C_{q}(t,\mu^{2}) \tag{6}$$

Factorization of DVCS [Radyushkin, 1997], [Ji, Osborne, 1998], [Collins, Freund, 1999]

$$\mathcal{H}(\xi, t, Q^2) = \sum_{a} \int_{-1}^{1} \frac{\mathrm{d}x}{\xi} T^a\left(\frac{x}{\xi}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2)\right) \frac{H^a(x, \xi, t, \mu^2)}{|x|^{p_a}} \tag{8}$$

At leading-order in  $\alpha_s$ , defining the singlet GPD  $H^{(+)q} = H^q(x) - H^q(-x)$ 

$$\operatorname{Im} \mathcal{H}(\xi, t, Q^{2}) \propto \sum_{q} e_{q}^{2} \mathcal{H}^{(+)q}(\xi, \xi, t, Q^{2})$$
(9)  
$$\operatorname{Re} \mathcal{H}(\xi, t, Q^{2}) \propto \sum_{q} e_{q}^{2} \int_{0}^{1} \mathrm{d}x \left[ \frac{1}{\xi - x} - \frac{1}{\xi + x} \right] \mathcal{H}^{(+)q}(x, \xi, t, Q^{2})$$
(10)

Factorization-scale dependence of GPDs [Müller et al, 1994]

$$\frac{1}{|x|^{p_a}}\frac{\partial}{\partial\log(\mu^2)}H^a(x,\xi,t,\mu^2) = \sum_b \int_{-1}^1 \frac{\mathrm{d}y}{\xi} K^{ab}\left(\frac{y}{\xi},\frac{\xi}{x},\alpha_s(\mu^2)\right) \frac{H^b(y,\xi,t,\mu^2)}{|y|^{p_b}} \tag{11}$$

where  $p_q = 0, p_g = 1$ Constraints  $p_g = 0, p_g = 1$ Hervé DutrieuxPositron Working Group Workshop6/18

DVCS dispersion relation [Anikin, Teryaev, 2007], [Diehl, Ivanov, 2007]

$$\mathcal{C}_{H}(t,Q^{2}) = \operatorname{Re}\mathcal{H}(\xi,t,Q^{2}) - \frac{1}{\pi}\int_{0}^{1} \mathrm{d}\xi' \operatorname{Im}\mathcal{H}(\xi',t,Q^{2})\left(\frac{1}{\xi-\xi'} - \frac{1}{\xi+\xi'}\right)$$
(12)  
$$\stackrel{LO}{=} 2\sum_{q}e_{q}^{2}\int_{-1}^{1} \mathrm{d}z \, \frac{D^{q}(z,t,Q^{2})}{1-z}$$
(13)

**Desired GFF:** 
$$GFF(t,\mu^2) = \int_{-1}^{1} \mathrm{d}z \, z D^q(z,t,\mu^2)$$
 (14)

Only model-independent strategy to directly hop from one to the other using the LO scale dependence of the D-term (ERBL equation). How effective is evolution to constrain it? **Shadow distributions** 

Find a distribution with reasonable shape such that it gives no experimental contribution at one scale, and check how big its contribution becomes as you move from the initial scale  $\rightarrow$  measures worst case uncertainty propagation from experiment to fit

Let's expand the D-term on a basis of Gegenbauer polynomials

$$D^{q}(z,t,\mu^{2}) = (1-z^{2}) \sum_{\text{odd } n} d_{n}^{q}(t,\mu^{2}) C_{n}^{3/2}(z)$$
(15)

#### Then

# GFF $C_a$ extraction $\int_{-1}^{1} dz \frac{D^q(z, t, \mu^2)}{1 - z} = 2 \sum_{\text{odd } n} d_n^q(t, \mu^2) \text{ and } \int_{-1}^{1} dz \, z D^q(z, t, \mu^2) = \frac{4}{5} \, d_1(t, \mu^2)$ (16)

• There is a shadow D-term for

$$d_1(\mu_0^2) = -d_3(\mu_0^2) \,! \tag{17}$$

[HD, Lorcé, Moutarde, Sznajder, Trawinski, Wagner, 2021]: allowing two free parameters  $d_1$  and  $d_3$  results in an inflation of uncertainty by a factor 20 with full correlation between fitted parameters compared to just  $d_1$  over a range of  $Q^2 \in [1.5, 4]$  GeV<sup>2</sup>

# in preparation



Simplified evolution in the qq sector

$$d_n^q(\mu^2) = \Gamma_n^{qq}(\mu^2, 2 \text{ GeV}^2) d_n^q(2 \text{ GeV}^2)$$
(18)

- $\bullet$  current range of most DVCS data : [1.5, 4]  ${\rm GeV^2}$
- Over this range,  $\Gamma_1^{qq}$  and  $\Gamma_3^{qq}$  are numerically very close  $\rightarrow$  little actual leverage in evolution to separate the two
- Estimate of the inflation on uncertainty when fitting jointly  $d_1$  and  $d_3$  compared to the sole  $d_1$ :

$$\propto \left(1 - \frac{\Gamma_{3}^{qq}(Q_{\max}^{2}, Q_{\min}^{2})}{\Gamma_{1}^{qq}(Q_{\max}^{2}, Q_{\min}^{2})}\right)^{-1}$$
(19)

• An increase thanks to EIC from [1.5, 4] GeV<sup>2</sup> to [1.5, 50] GeV<sup>2</sup> could yield a decrease by 3 times of the uncertainty on  $(d_1, d_3)$  due to the sole effect of increase in  $Q^2$  range, without taking account a better experimental precision.

- Moral of the story: Pure DVCS extraction of GPDs is not possible without large model dependence (at least in the regime of moderate  $x_B$  probed by JLab, situation somewhat different at very small  $x_B$  [HD, Bertone, Winn, 2023]).
- Shadow distributions [Bertone, HD, Mezrag, Moutarde, Sznajder, 2021] introduced to deal with the more complicated general problem of extracting a full GPD from a Compton form factor at higher-order in perturbation theory, including **polynomiality** and **positivity** constraints [HD, Grocholski, Moutarde, Sznajder, 2021]:



See Pierre Chatagnon's talk for details on more elaborated analyses

Hervé Dutrieux

- The deconvolution problem: example with gravitational form factors
- Impact of a positron beam

(間) (目) (見)

Els OQO

- GPDs from CFFs: very ill-defined, need either models, other experimental processes (DDVCS, meson pair production, ...) or lattice data.
- But CFFs from experimental data in principle can be data-driven: for instance [Moutarde, Sznajder, Wagner, 2019], with 8 independent neural networks for the real and imaginary parts of the leading-twist CFFs



CLAS data (2015) [Pisano et al, 2015], [Jo et al, 2015],  $x_B \approx 0.25$ ,  $t \approx -0.2$  GeV<sup>2</sup>,  $Q^2 \approx 2$  GeV<sup>2</sup>, comparison with GK and VGG models

Hervé Dutrieux

Positron Working Group Workshop

With such a flexible approach and using the world DVCS dataset in 2019, barely more than  ${\rm Im}\,{\cal H}$  is significantly constrained



(left)  $\operatorname{Re} \mathcal{H}(\xi, t = -0.3, Q^2 = 2 \text{ GeV}^2)$  – (center)  $\operatorname{Im} \mathcal{H}$  – (right)  $\operatorname{Im} \mathcal{H}$  without the HERA and COMPASS data. (blue bands: parametric fit with physical parameters) The uncertainty on  $\operatorname{Re} \mathcal{H}$  drives the uncertainty on the subtraction constant, and therefore the ability to extract the *D*-term.

Assuming pure dominance of  $d_1$  in the subtraction constant, a tripole *t*-dependence, enforcing LO evolution in  $Q^2$ ,



But a positron beam is ideally designed to reduce the uncertainty on  $\operatorname{Re} \mathcal{H}!$ 

• Beam Charge Asymmetry:  $A_C(x_B, t, Q^2) = (d^4\sigma^+ - d^4\sigma^-)/(d^4\sigma^+ + d^4\sigma^-)$ 

$$A_{C}^{\cos\phi} \propto \operatorname{Re}\left[F_{1}\mathcal{H} + \xi(F_{1} + F_{2})\widetilde{\mathcal{H}} - \frac{t}{4m^{2}}F_{2}\mathcal{E}\right]$$
(20)

[Kroll, Moutarde, Sabatie, 2013] - leading order, leading twist

Settings of the impact study: [HD, Bertone, Moutarde, Sznajder, 2021]

- CLAS12 10.6 GeV, cuts  $Q^2 > 1.5$  GeV $^2$  and  $-t < 0.2Q^2$
- 80 days of  $(e^+ + e^- \text{ beam})$ , luminosity  $0.6 \times 10^{35} \text{ cm}^{-2} \text{.s}^{-1}$ , perfect acceptance and efficiency, 3% systematic uncertainty
- we use a parametric model of CFFs to estimate the BH/DVCS cross-section (the neural network is too unconstrained in some regions of the phase-space to provide a good prediction) → number of events per bin



Hervé Dutrieux

Bayesian reweighting of the BCA in one bin  $(x_B, t, Q^2)$ :

$$\omega_k = \frac{1}{Z} \chi_k^{n-1} \exp(-\chi_k^2/2) \tag{21}$$



Hervé Dutrieux

Positron Working Group Workshop

16/18

ELE OQO



Hervé Dutrieux

17 / 18

- A positron beam is a great opportunity to constrain some poorly known CFFs
- Although this is not in itself enough to extract GPDs in a data-driven fashion, it is still the most prominent experimental sensitivity to GPDs as of now
- We will soon enter an era of calculations of GPDs on the lattice with realistic uncertainties and a domain in  $x \approx 0.15 0.85$ . Lattice picks directly the value of  $(\xi, t, \mu^2)$  at which it operates by selecting the external momenta, so no "deconvolution" problem. Instead there an x-reconstruction issue, but arguably more manageable:

$$\int \frac{\mathrm{d}z^{-}}{2\pi} e^{i \mathbf{x} \mathbf{P} \cdot \mathbf{z}} \left\langle \mathbf{p}_{2} \left| \bar{\psi}^{q} \left( -\frac{\mathbf{z}}{2} \right) \gamma^{\mu} \psi^{q} \left( \frac{\mathbf{z}}{2} \right) \left| \mathbf{p}_{1} \right\rangle \right.$$
(22)

Lattice will give first-principles modelling tools of GPDs in the moderate  $x_B$  range, while experiment will validate the lattice calculation in a crucial kinematic domain.

|                |                                 | 《曰》《聞》 《言》 《言》 品言 少父(?) |
|----------------|---------------------------------|-------------------------|
| Hervé Dutrieux | Positron Working Group Workshop | 18/18                   |

# Thank you for your attention!

ションド・モン 別は ろうつ