Positron Working Group Workshop

Simulation studies of beam-related background: what we have learned from CLAS12

Raffaella De Vita (Jefferson Lab) and the CLAS Collaboration

Beam background simulations

- Simulation studies of beam-related background can be performed with GEANT4
- Single beam particle simulation can be used to:
 - Estimate background particle rates:
 - Per process
 - Per particle type
 - ..
 - Identify where background is created
 - Estimate radiation doses
 - Estimate detector hit rates, PMT rates, etc.
- Simulations of multiple beam particles in the detector readout window can be used to:
 - Estimate the impact of background on the "true" signals:
 - Pile-up
 - Dead-time
 - Estimate the impact on reconstruction efficiency and resolution

Such kind of studies have been done simulating the electron beam in CLAS12 to optimize the detector design and configuration

CLAS12

CLAS12 in Hall B

CLAS12 Event Display

Background simulations

- Simulations performed with GEMC (GEANT4 Monte Carlo), developed by M. Ungaro, see http://gemc.jlab.org
- Supports simulations of "signal" particles and "beam", where the user can select:

 - Number of beam particles
 Type of beam particles
 Particle energy and vertex
 Time window in which the beam particles are distributed — Time structure
- Beam is generated upstream the CLAS12 target and the primary background is generated by the particle interaction within the target and other materials
- Most of the background is due to electromagnetic processes (Moller scattering and Bremsstrahlung for the electron beam)
- Contributions from nuclear and hadronic processes are smaller but can be critical for specific cases such as neutron fluxes

GEMC rendering of CLAS12

Active and passive shield in CLAS12

 Moller electrons produced at the target are focussed in the forward detector by the 5 Tesla solenoid field and absorbed by "thick" beamline components

10k 10-GeV electrons with no field and with 5T field

Passive shield design

 The main absorber is a tungsten cone surrounding the vacuum pipe downstream of the target

- The optimal shape of the cone (inner radius, angle, z position) depends on the desired acceptance, beam size, target thickness, and position, and determines the maximum operating luminosity for the forward detector
- Most challenging configuration simulated so far is the rastered beam used in polarized target experiments (RG-C)

Beam profile sampling

- Use "flux detectors" to sample particles passing through vertical planes at different z along the beamline
 - -Record particle type, energy, coordinates, ...
- Determine particle rates as a function of R and Z

9

Moller spot size

- Radius of Moller electrons' spot size is determined by the trajectory of Moller electrons with energy of 200-300 MeV that spiralize in the solenoid field
- Spot size increases slowly with z and depends on chosen raster size Vacuum beampipe radius

Jefferson Lab

- Maximum raster size estimated to be less than 10 mm, more likely of the order of 7 mm
- The actual raster size used by the experiment was in the end 6 mm because of a misalignment of the target cell

Detector rates, occupancy, dose

 For each given shield configuration, detector rates, occupancy, and rates can be estimated as a function of raster size and/or beam position and luminosity

- Operating luminosity with 7 mm rastered beam was set to 0.5 x 1035cm-2s-1 based on:
 - Estimated FTCal dose rate and corresponding light loss due to radiation damage
 - DC average occupancy and dependence on beam position

Background origin

- Origin of detected background hits can be studied by recording their "mother" particles and keeping track of production of secondaries throughout the GEANT4 processing:
 - Useful for finding hot spots
 - Can be produced per particle type etc.

Origin of particles creating hits in Drift-Chamber Region 1

Detector response

- Background hits can be turned into detector signals using the same "digitization" algorithms used for the true hits:
 - Study impact on detection of the true hits and ultimately on particle reconstruction
 - Study pile-up, dead-time effects, …

Need to account for the detector response vs. time, readout windows, and readout electronics behavior

Detector response

- Background hits can be turned into detector signals using the same "digitization" algorithms used for the true hits:
 - Study impact on detection of the true hits and ultimately on particle reconstruction
 - Study pile-up, dead-time effects, ...

Need to account for the detector response vs. time, readout windows, and readout electronics behavior

14

Summary

- Detailed beam background simulations for CLAS12 were performed with GEANT4 to:
 - Design shielding
 - Optimize the detector configuration
 - Determine limiting factors to the maximum luminosity
 - Estimate background rates, occupancies, and radiation doses
 - Estimate the impact on the "true" signal detection and particle reconstruction efficiency and resolution
- Results have been shown to match reality quite well
- These studies have become quite standard for planning future data taking in new configurations
- Currently being done for the CLAS12 high-luminosity upgrade

