Posítron Working Group Workshop

March 18th-20th, 2024

The George Washington University

D. Higinbotham¹, A. Schmidt², E. Voutier³, X. Zheng⁴ and the **Jefferson Lab Positron Working Group**

¹Thomas Jefferson National Accelerator Facility, Newport News, VA, USA ²The George Washington University, Washington, DC, USA ³Université Paris-Saclay, CNRS/IN2P3/IJCLab, Orsay, France ⁴University of Virginia, Charlottesville, VA, USA

Multi-photon effects and Generalized Parton Distributions have been recognized as the golden physics cases of the Jefferson Lab Positron Upgrade.

NUMBER	TITLE	PHYSICS THEME	CONTACT PERSON	HALL	DAYS AWARDED	SCIENTIFIC RATING	PAC DECISION
PR12+23-002	Beam Charge Asymmetries for Deeply Virtual Compton Scattering on the Proton at CLAS12	GPDs	Eric Voutier	В	100	A -	C1
PR12+23-003	Measurement of Deep Inelastic Scattering from Nuclei with Electron and Positron Beams to Constrain the Impact of Coulomb Corrections in DIS	TPE	Dave Gaskell	С	9.3	A -	C1
PR12+23-006	Deeply Virtual Compton Scattering using a positron beam in Hall C	GPDs	Carlos Muñoz Camacho	С	137	A -	C1
PR12+23-008	A Direct Measurement of Hard Two-Photon Exchange with Electrons and Positrons at CLAS12	TPE	Axel Schmidt	В	55	A	C1
PR12+23-012	A measurement of two-photon exchange in unpolarized elastic positron–proton and electron–proton scattering	TPE	Michael Nycz	С	56	A -	C1

There is still a lot to explore, quantify, and validate.

• p-GPs – LOI12+23-001

Measurement of the generalized polarizabilities of the proton with positron and polarized electron beams

N. Sparveris

Axial form factor – LOI12+23-002

The axial form factor of the nucleon from weak capture of positrons

D. Dutta

Dark Bhabha – LOI12+23-005

A hopefully amplitude-level search for a Dark Photon in Bhabha scattering

D. Mack

<u>TPE in polarization transfer – LOI12+23-008</u>

Polarization transfer in positron-proton elastic scattering

A. Puckett, J.C. Bernauer, A. Schmidt

Dispersive effects in DIS – LOI12+23-015

Energy dependence of dispersive effects in unpolarized inclusive elastic electron/positron-nucleus scattering the impact of Coulomb correct

P. Gueye, J. Arrington, P. Giuliani, D. Higinbotham

• p-GPs – LOI12+23-001

Measurement of the generalized polarizabilities of the proton with positron and polarized electron beams

N. Sparveris

<u>Axial form factor – LOI12+23-002</u>

The axial form factor of the nucleon from weak capture of positrons

D. Dutta

Dark Bhabha – LOI12+23-005

A hopefully amplitude-level search for a Dark Photon in Bhabha scattering

D. Mack

<u>TPE in polarization transfer – LOI12+23-008</u>

Polarization transfer in positron-proton elastic scattering

A. Puckett, J.C. Bernauer, A. Schmidt

Dispersive effects in DIS – LOI12+23-015

Energy dependence of dispersive effects in unpolarized inclusive elastic electron/positron-nucleus scattering the impact of Coulomb correct

P. Gueye, J. Arrington, P. Giuliani, D. Higinbotham

Míssíng

- Polarized target opportunities
- Tests of the Standard Model
- Electroweak processes
- Experimental program at LERF
- Novel ideas

The JLab PWG offers review to the new experimental proposals looking for PWG Endorsement at PAC52.

Schedule

- $\circ~$ Send title and short description by March 29th
- $\circ~$ Send proposal by April 15 th 1pm EDT
- \circ Review due on April 22nd 1pm EDT
- \circ Endorsement decision due on April 26th 1pm EDT

Contact: voutier@ijclab.in2p3.fr

https://www.institut-pascal.universite-paris-saclay.fr/en

Joint Multidimensional Hadron Structure (MDHS) and Jefferson Lab Upgrades (JPhys++) brainstorming program at the Institut Pascal

> October 21st – November 8th, 2024 (tentative schedule)

The Institut Pascal of the University of Paris-Saclay is offering infrastructure and funding support to hold the joint MDHS & JPhys++ program which will address the *theoretical challenges of hadron structure* and the *benefits of the CEBAF Positron and Energy Upgrades*.

- What are the best strategies to extract GPDs and TMDs from experiments ?
- What can be learned about TMD evolution with the Jefferson Lab Upgrades ?
- What Jefferson Lab Upgrades can reveal about the emergence of hadron mass ?
- 0 ...