

µRWELL-PICOSEC: The Development of Fast Timing Resistive Micro-WELL Detector Technology.

Kondo Gnanvo, Brian Kross, Jack McKisson, Drew Weisenberger, Wenze Xi Radiation Detectors & Imaging Group (RD&I Group) @ Jefferson Lab

2023 IEEE NSS MIC RTSD - Nov. 4 - 11, 2023 Vancouver, Canada

Introduction and concept of picosecond timing Micro Pattern Gaseous Detectors (MPGDs)

✤ Development of µRWELL-PICOSEC detector @ JLab (LDRD FY22).

✤ Preliminary results: Impact µRWELL hole parameters on timing performance

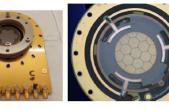
* Ongoing R&D and approaches to address challenges of μ RWELL-PICOSEC.

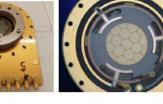
Background & Rationale:

- Develop precise and fast timing cost effective gaseous detectors for application in particle physics and medical instrumentation.
- Properties such as stability, radiation hardness, large area, segmented readout are highly desirable for such timing detectors.
- Proof of concept of precise timing detectors based on MPGDs has been established by the MM-PICOSEC collaboration with Micromegas
- Development of picosecond detector based on μ RWELL technology has the potential to satisfy such requirements.

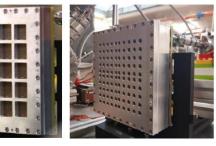
Applications in future particle physics (HEP and NP) experiments:

- Fast timing technology such as μRWELL-PICOSEC are attractive alternative PID technologies options such as Time-Of-Fight (TOF)
 detectors for charged particles or photosensors technologies for Cerenkov detectors.
- The technology could be deployed in future Electron Ion Collider (EIC) Detector II, ePIC upgrade or future experiments at Jefferson Lab
- Potential application in medical instrumentation such as for TOF-PET devices will be explored.

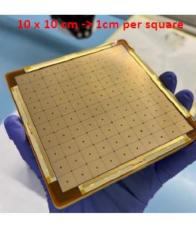


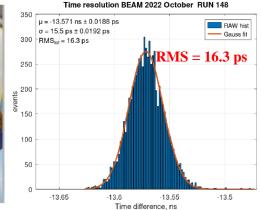

MM-PICOSEC: Development of fast timing (picosecond resolution) MPGD using Micromegas amplification

- Large ongoing collaboration based at CERN with several major institutions from France, Greece, Poland, China ... and US (JLab) *
- Proof of principle picosecond timing with MPGD established with several MM-PICOSEC prototypes: *
- Large-area (10 cm \times 10 cm) and multi-channel (100 pads) prototype $\rightarrow < 20$ ps with MIPs and 70 ps with single photon (laser)
- ** PICOSEC-MM collaboration and RD51 collaboration \rightarrow strong connection (i.e., beam test campaign and GDD lab at CERN)
- Strong synergy between MM-PICOSEC & μ RWELL-PICOSEC \rightarrow leverage on expertise & experience of MM-PICOSEC community



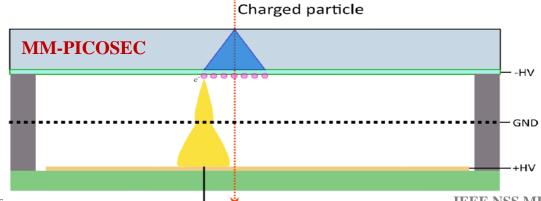
 1-ch (φ1cm) • 7-ch (1cm) Proof of concept Signal sharing Resistive and Resistive prototype non-resistive prototypes.

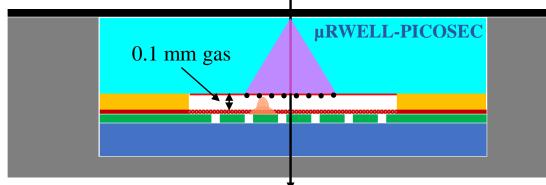

- 100-ch (10 cm x10 cm) • 19-ch (\$\$.6cm) Tileable Signal sharing.
 - MM decoupled from housing with spring-loaded pins



• 100 ch (10 cm x10 cm) Hybrid ceramic substrate MM MgF2 mechanically decoupled

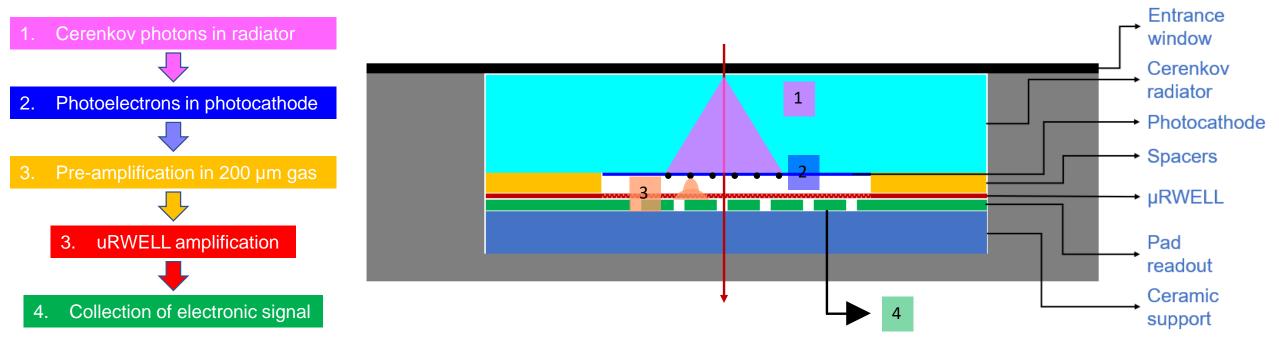
• 100 ch (10 cm x10 cm) Sealed Ti housing Increased fill factor


- Aune et al., Nuclear Inst. and Methods in Physics Research, A 993 (2021) 165076, https://doi.org/10.1016/j.nima.2021.165076
- Bortfeldt et al., Nuclear Inst. and Methods in Physics Research, A 903 (2018) 317–325, https://doi.org/10.1016/j.nima.2018.04.033
- A. Utrobicic et al., 2023 JINST 18 C07012, https://doi.org/10.1088/1748-0221/18/07/C07012



- * μRWELL-PICOSEC and MM-PICOSEC belongs to the MPGD-based fast timing detector family
- Different amplification structure will allow different optimization of the technologies in term of operation stability and timing performance
- Parallel development of will mutually benefit the two technologies and offer options for applications

	MM-PICOSEC	µRWELL-PICOSEC	Comments
Radiator/photocathode	Both technologies share the same devices	Both technologies share the same devices	common R&D
Readout structure	Both technologies share the same devices	Both technologies share the same devices	common R&D
Amplification structure	mesh → 128 µm gap ✓	Cu-clad Kapton foil → 50 µm gap	large capacitance hurts µRWELL
Resistive vs. metallic	Both options available 🗸	Only resistive 🗸	Resistive \rightarrow HV stability
Segmentation MPGD	Segmentation of the mesh will be challenging	μ RWELL Cu-electrode can be segmented \checkmark	Improve rate capabilities for resistive
Mechanical structure	Mesh gap uniformity \rightarrow challenging for large area	Gap uniformity \rightarrow no pillar, no stretching \checkmark	



Concept of \muRWELL-PICOSEC: Develop fast timing gaseous detector using μ RWELL amplification \rightarrow timing resolution of tens of ps

- 1. Cherenkov photons: relativistic charged particle creates Cerenkov photons → prompt photons i.e., timing resolution.
- 2. Photoelectrons: convert the Cerenkov photons into electrons, all electrons created at the same z position → timing resolution
- 3. Pre-amplification: First amplification of electrons 100 to 200 µm gas in high drift field region (~20 kV/cm)
- 4. Amplification : Final electron amplification in μ RWELL gain structure \rightarrow high electric field (>40 kV/cm)
- 5. Electronic Signal: Arrival of the amplified electrons to the anode creates a signal.

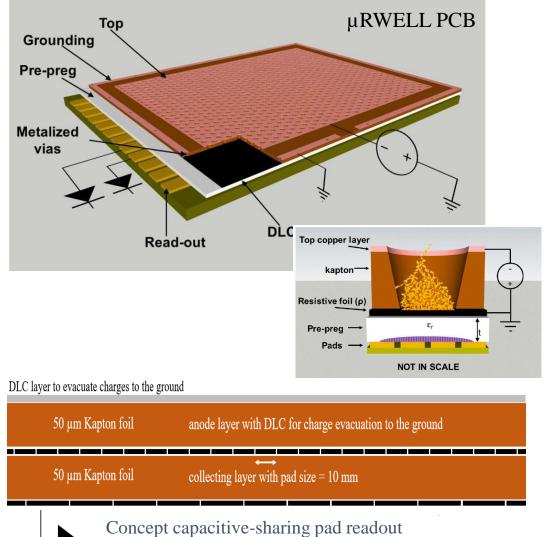
Introduction and concept of picosecond timing Micro Pattern Gaseous Detectors (MPGDs)

♦ Development of μ RWELL-PICOSEC detector @ JLab (LDRD FY22).

Preliminary results: Impact µRWELL hole parameters on timing performance

✤ Ongoing R&D and approaches to address challenges of µRWELL-PICOSEC.

Radiation Detector & Imaging Group


Design of µRWELL foil

- Single layer amplification MPGD
 - Simple amplification structure using same material as GEM foil
 - Resistive technology \rightarrow intrinsically robust against spark
 - Large area capability
- Specially well suited for PICOSEC technology
 - μ RWELL is a resistive MPGD \rightarrow improve detector stability
 - Segmented μ RWELL (PEP) \rightarrow improve rate capability & timing

Integration of capacitive-sharing readout structures

- Capacitive-sharing pad readout will allow precise position information capability with limited readout channel number
- Combining segmented μ RWELL and capacitive-sharing \rightarrow best of both world
 - Segmented µRWELL: excellent timing resolution
 - Capacitive-sharing readout: excellent position resolution

G. Bencivenni et al 2015 JINST 10 P02008

Radiation Detector & Imaging Group

IEEE NSS MIC RTSD 2023 Vancouver - 11/04/2023 K. Gnanvo et al., NIM A, 1047 (2023) 167782

Photocathode:

Current technology: Cesium Iodide (CsI)

Pros:

• High quantum efficiency (QE) in vacuum ultraviolet (VUV) region which is most radiated by any radiator medium

Cons:

- Sensitivity to water \rightarrow performance rapidly deteriorates
- Ion bombardment (IBF) of CsI is challenging for high rate

We will investigate materials with similar level of QE:

Candidates are B4C, DLC and Nano diamond (ND)

- Goal is to achieve similar level of QE → Extensive R&D
- Radiation hardness and unsensitivity to humid condition

Radiator:

Current technology: Magnesium Fluoride (MgF2)

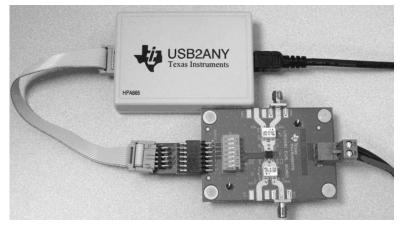
Pros:

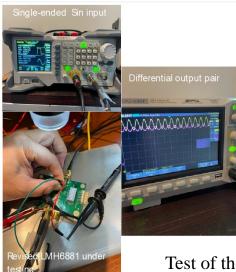
• Transparency in vacuum ultraviolet (VUV) region which is most radiated by any radiator medium

Cons:

- Low photon yield
- large Cerenkov angle $\sin(\Theta_c) \rightarrow$ poor spatial information
- Smaller Θ_c material will results in even lower photon yield

We will investigate radiator materials for higher photon yield capability




µRWELL-PICOSEC: Multi-channel readout and DAQ

Multi-channel Readout

LMH6881: Programmable differential amplifiers

CAEN FERS-5203: 64-ch Pico-TDC

- Provide 64 TDC channels :
- ✤ ~7 ps RMS timing resolution
- LVDS input differential signals
- ✤ 3.5 Gbits/s Optical ethernet bus

Lab test of single channel prototypes

Rohde & Schwarz, RTP164B:

- High performance oscilloscope:
- 2×16 GHz bandwidth channels for sub-ps resolution
- ✤ 40 GSamples/s & 16 bits measurement precision

Alternative options

- Multi channel digitizer SAMPIC (D. Breton, CEA Saclay)
- Multi-channel custom-made pre-amplifier (M. Kovacic, U. of Zagreb)

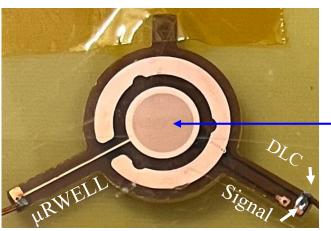
Test of the LMH6881 evaluation board

IEEE NSS MIC RTSD 2023 Vancouver - 11/04/2023

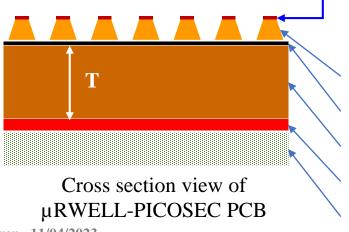
µRWELL-PICOSEC: Single-channel prototypes

Single-channel µRWELL-PICOSEC prototype

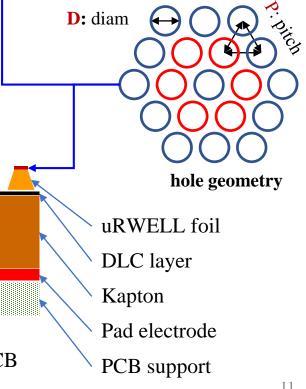
1 cm diameter active area / pad)


Two batches were produced for performance optimization

- Batch I: Standard µRWELL (pitch 140 um, holes diameters 70/50
- Batch II: Samples with different hole size, pitch, Kapton thickness


Tested in beam: RD51-PICOSEC July & August 2023 campaigns

- HV scan for optimal timing
- Test with different photocathodes (DLC and CsI)
- Different pre-amplification gaps (167 µm & 117 µm


batch	Prototype	Τ (μm)	P (µm)	D (µm)	d (µm)
Ι	T50-P140-D70	50	140	70	50
II	T <mark>150</mark> -P140-D70	150	140	70	50
II	T <mark>150</mark> -P140-D85	150	140	85	65
II	T150-P140-D70	150	120	70	50
II	T150-P140-D85	150	120	85	65

µRWELL-PICOSEC prototype

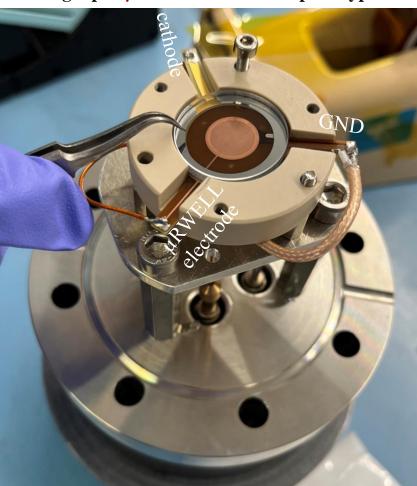
Nomenclature of the prototypes: T150-P140-D70 $T = 150 \ \mu m \rightarrow Kapton thickness$ $\mathbf{P} = 140 \,\mu \text{m} \rightarrow \text{Hole pitch}$ **D** = 70 μ m \rightarrow Hole Outer Diam.

IEEE NSS MIC RTSD 2023 Vancouver - 11/04/2023

First µRWELL-PICOSEC prototype

Single-pad small prototype

- 1 cm diameter active area
- 3 mm thick radiator + CsI photocathode
- Sensor: 50 μm μRWELL on 50 μm Kapton
- Holes parameters: $140 \,\mu m / 70 \,\mu m / 50 \,\mu m$

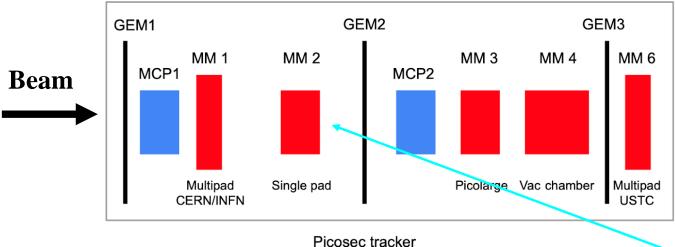

First tests with LED source (GDD lab, 12/2022)

- Poor timing compared to MM-PICOSEC
- Prototype very resilient against sparks

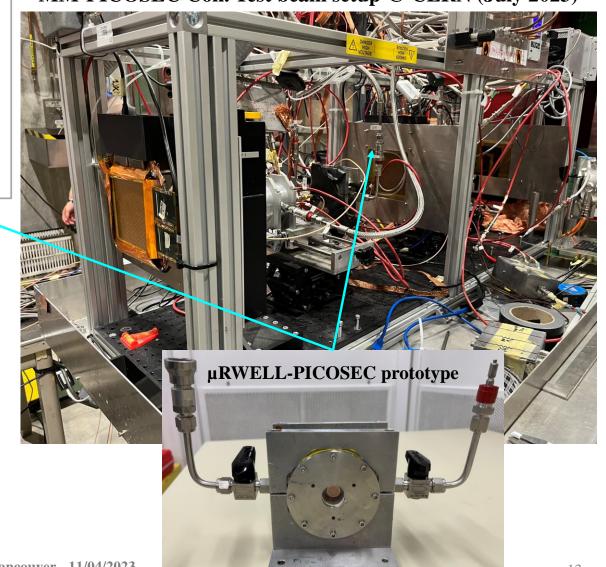
Lessons learned from preliminary tests

- Several parameters to be tweaked to improve resolution
- μRWELL hole parameters to be optimized
- Minimizing capacitance noise → increase the gap between µRWELL device and pad layer
- Reduce or eliminate all external source of capacitance noise → wire connection ...
 Radiation Detector & Imaging Group

Single-pad **µRWELL-PICOSEC** prototype



Prototype on test bench at CERN GDD Lab


Jefferson Lab µRWELL-PICOSEC: CERN Test Beam (July & August 2023)

- Participate in the PICOSEC Coll. 2 test beam campaigns @
 CERN in July 2023 & Aug. –Sept. 2023
- Several single-channel µRWELL-PICOSEC prototypes with different parameters were tested
- HV scan on both the cathode (pre-amplification) and anode
 (μRWELL amplification)

MM-PICOSEC Coll. Test beam setup @ CERN (July 2023)

Introduction and concept of picosecond timing Micro Pattern Gaseous Detectors (MPGDs)

✤ Development of µRWELL-PICOSEC detector @ JLab (LDRD FY22).

✤ Preliminary results: Impact µRWELL hole parameters on timing performance

✤ Ongoing R&D and approaches to address challenges of µRWELL-PICOSEC.

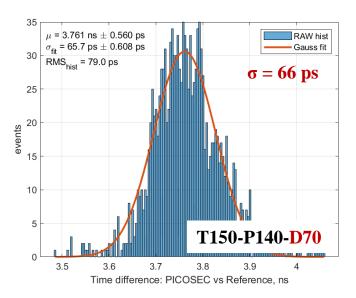
µRWELL-PICOSEC: Hole diameter comparison (07/2023)

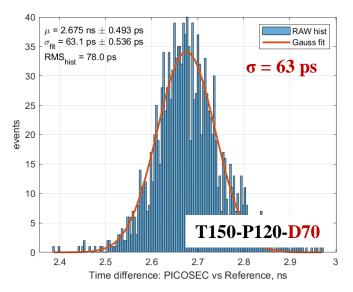
July test beam (07/28): DLC photocathode

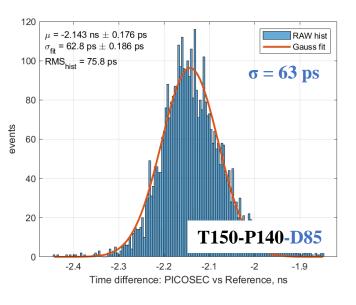
- ❖ Single-pad prototype Alu vessel housing with long wires connection to prototype ground → degrades timing
- * 4 prototypes with different μ RWELL holes parameters
 - $2 \times 140 \,\mu\text{m}$ pitch & outer / Inner diam 70 / 50 μm
 - $2 \times 120 \,\mu\text{m}$ pitch & outer / Inner diam 85 / 65 μm
- ✤ Larger holes for same pitch → better timing

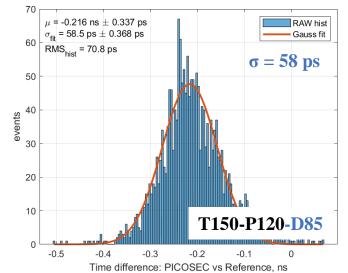
Hypothesis:

Jefferson Lab

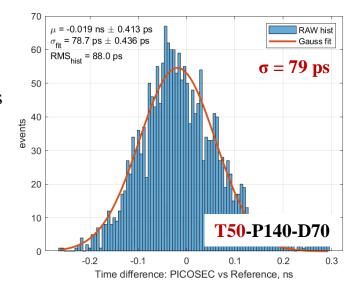

- Straighter field lines in pre-amplification gap to holes = shorter, uniform electron drift time
- Smaller Cu-to-hole area ratio → smaller input capacitance seen by FE pre-amplifier

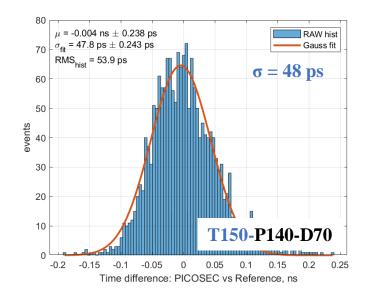

♦ smaller pitch → better timing

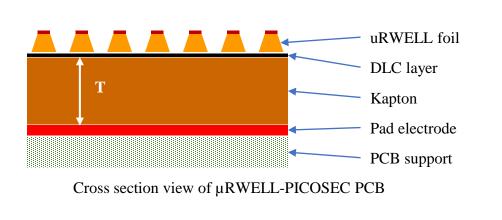

Hypothesis: Same reason as above

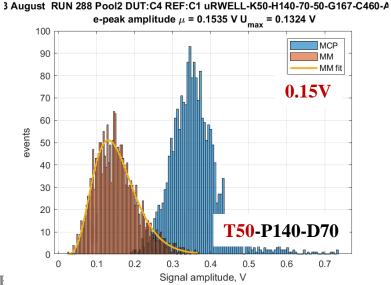

More in next slides

Radiation Detector & Imaging Group

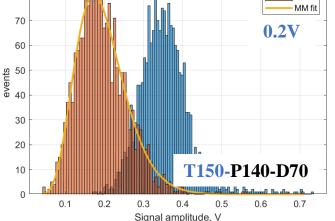

IEEE NSS MIC RTSD 2023 Vancouver - 11/04/2023


Jefferson Lab µRWELL-PICOSEC: Kapton thickness comparison (08/2023)




August test beam (08/28):

- ✤ With CsI photocathode.
- * 2 prototypes with different μ RWELL holes parameters
 - Kapton thickness 50 μm P/OD/ID: 140/70/50
 - Kapton thickness 150 μm P/OD/ID: 140/70/50
- ✤ Thicker Kapton → better timing
- Smaller capacitance between the pad and the µRWELL layer

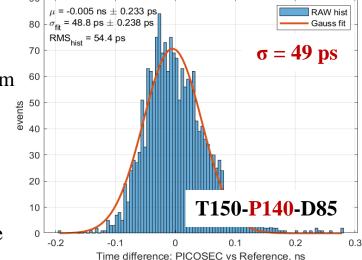


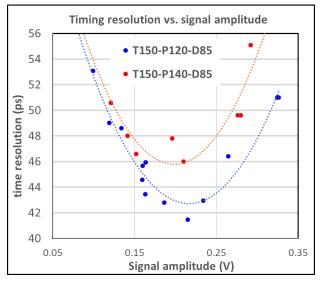
August RUN 218 Pool2 DUT:C4 REF:C1 uRWELL-K150-H140-85-65-G167-C460e-peak amplitude μ = 0.1960 V U_{max} = 0.1725 V

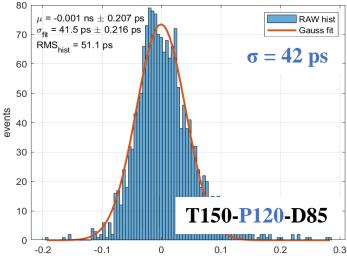
Radiation Detector & Imaging Group

µRWELL-PICOSEC: Hole pitch comparison (08/2023)

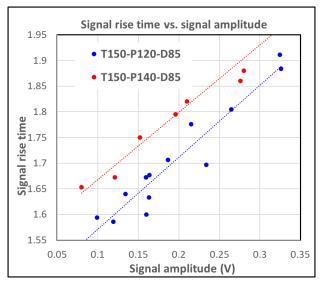
August test beam (08/28): CsI photocathode


- * 2 prototypes with different μ RWELL holes parameters
 - 140 μ m & 120 μ m pitch, outer / Inner diam 85 / 65 μ m
- ♦ smaller pitch → better timing


Hypothesis:


- Straighter field lines in pre-amplification gap
- Smaller Cu-to-hole ratio → smaller input capacitance
- HV scan runs: Combination of μ RWELL HV scan

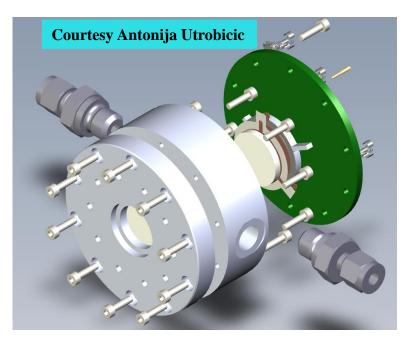
(amplification) and cathode HV scan (pre-amplification)


- Signal amplitude of µRWELL-PICOSEC pad as variable
- Timing has a minimum (optimal) at ~ 0.2 0.25 V →
 explanation under investigation
- Signal rise time: defined as the width of the distribution of the signal arrival time (SAT) w.r.t. MCP timing (ref)
 - \rightarrow proportional to signal amplitude

Time difference: PICOSEC vs Reference, ns

Introduction and concept of picosecond timing Micro Pattern Gaseous Detectors (MPGDs)

✤ Development of µRWELL-PICOSEC detector @ JLab (LDRD FY22).


Preliminary results: Impact µRWELL hole parameters on timing performance

* Ongoing R&D and approaches to address challenges of μ RWELL-PICOSEC.

µRWELL-PICOSEC: Next steps → Plans for 2024 test beam Jefferson Lab

New housing for single-channel prototypes

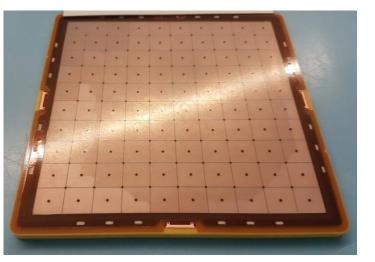
- Minimize external source of noise (i.e ** grounding, cables pick-up antenna ...)
- * Makes it easier to quickly exchange prototypes (replacement of µRWELL-PCBs, photocathodes) during beam test

D: diam size pitch **Round holes (RD) Round holes (RD)**

New holes geometries for µRWELL amplification

pitch

- * Minimize external source of noise (i.e grounding, cables pick-up antenna ...)
- * Makes it easier to quickly exchange prototypes (replacement of


Prototype	Shape	Р	D	d
SQ-T150-P120-D100	square	120	100	80
RD-T150-P120-D100	round	120	100	80
RD-T150-P100-D80	round	100	80	60
RD-T150-P80-D60	round	80	60	40

IEEE NSS MIC RTSD 2023 Vancouver - 11/04/2023

Jefferson Lab $\mu RWELL$ -PICOSEC: Next steps \rightarrow Plans for 2024 test beam

Large 100-pad prototypes (Micromegas & µRWELL)

✤ 100-pad µRWELL-PICOSEC & MM-PICOSEC prototypes

- Parameters based on single-channel prototypes studies
- Mechanical housing fabricated in the JLab machine shop
- ✤ Same housing for MM-PICOSEC & µRWELL-PICOSEC
- Multi-channel readout PCB interface board under development
- MM-PICOSEC used as reference detector
- ✤ Large prototypes will be tested in beam at CERN in FY24

Multi channel digitizer SAMPIC (D. Breton, CEA Saclay)

https://indico.cern.ch/event/396441/contributions/183662 9/attachments/794757/1089389/02_SAMPIC_Prague.pdf

Multi-channel custom-made pre-amplifier (M. Kovacic, U. of Zagreb)

- Fast timing MPGD detector with picosecond level timing resolution is a very promising and fast emerging field pioneered by the development of Micromegas-based MM-PICOSEC detector by the PICOSEC collaboration at CERN
- Fast timing MPGD can be option of choice for large area cost effective for Time of Flight (TOF) detector in HEP and NP field as well as in the field of medical instrumentation
- The resistive micro-Well µRWELL detector is an alternative technology ideally suited for PICOSEC technology and share synergy with the MM-PICOSEC
- Single-channel (1-cm diam.) μRWELL-PICOSEC prototypes have been developed and tested during two CERN RD51-PICOSEC test beam campaigns in summer 2023
- Preliminary from the prototypes show promising results with < 42 ps time resolution achieved with MIPs and with CsI photocathode and suggest that with a careful optimization of the μRWELL geometry, one can reach a timing resolution in the order of 20 ps.
- ❖ Large-area (10 cm × 10 cm) µRWELL-PICOSEC prototype with 100-pads readout and optimized µRWELL holes pattern is under fabrication for study in beam in 2024.

Radiation Detector & Imaging Group

The research described in these slides was conducted under the Laboratory Directed Research and Development (LDRD) Program at Thomas Jefferson National Accelerator Facility for the U.S. Department of Energy

Back-up

LDRD: Development of large-area picosecond timing detectors based on Resistive Micro Well for experiments at JLab and at the EIC

- **1.** Develop µrPICOSEC prototypes and demonstrate the proof of concept with the timing performance.
 - ↔ Design µRWELL amplification / multi-channel readout to combine with Cerenkov radiator and photocathodes.
 - Optimize the mechanical structure for uniformity over large area (100 cm^2) and thin gap ($100 200 \mu \text{m}$) prototypes.
 - Full characterization of the prototype with laser source and in beam as well as test in high magnetic field.
 - Achieve the goal of a timing resolution better **than 50 ps** for charged particle with first prototype.

2. Investigate alternative radiator and photocathode materials.

- Cesium Iodide (CsI) is unstable under humidity and susceptible to aging due to ion bombardment.
- ↔ We will explore alternative and more robust photocathode materials with similarly high photoelectron yield.
- * Investigate ideas of focusing optic devices integrated with radiator for precise position measurement in addition to timing.

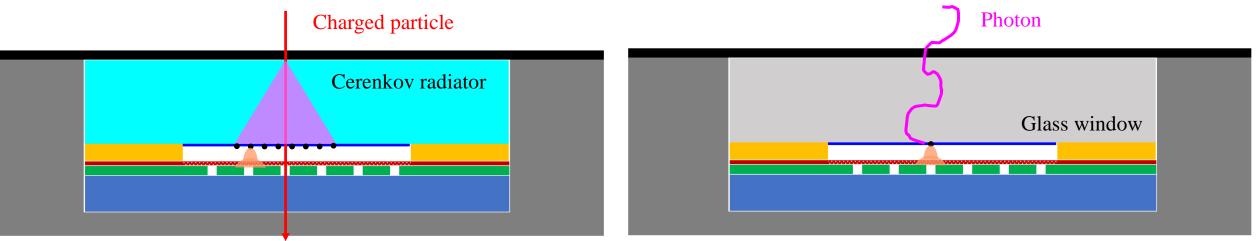
3. Implement multi-channel fast electronics readout and DAQ system for µrPICOSEC detector.

- Lab bench precision measurement of the timing performances of μ rPICOSEC prototypes.
- ✤ Development of readout and DAQ system for 100-pads channels for µrPICOSEC prototypes.

Timing detector for relativistic charged particles:

- Cerenkov radiator crystal transparent in VUV region
- High quantum efficiency (QE) photocathode in VUV medium ~ 7 photoelectrons for 3 mm MgF2
- ✤ Goal for timing resolution (~25 ps)

Applications:


- ✤ Time of Flight detector
- ✤ T0 detector

Single photon photodetector:

- High quantum efficiency (QE) photocathode in (VUV) medium which is most radiated by any radiator medium
- ✤ Window transparent to Cerenkov radiation
- ✤ High gain for single photon timing goal of ~50 70 ps

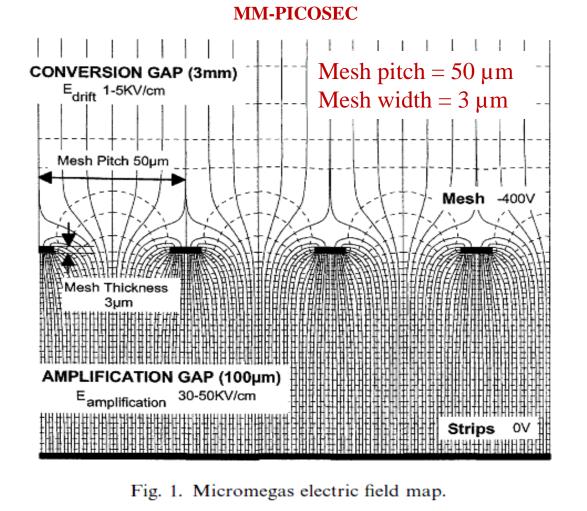
Applications:

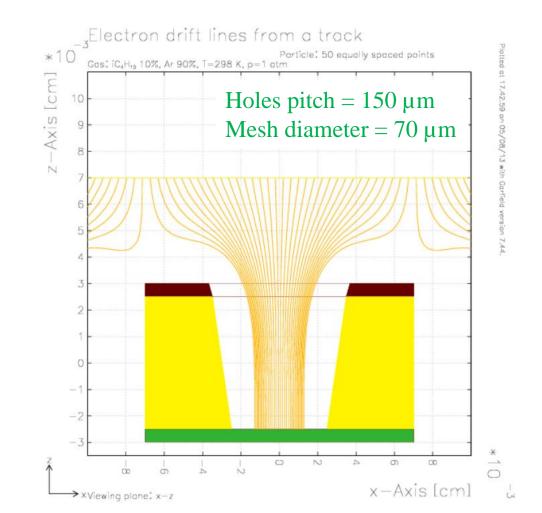
- Photosensor for RICH detectors
- T0 tagger at neutrino detector (liquid Ar scintillator light)

Time of Flight (TOF) detectors		This R&D target	Photosensors fo	Thi	This R&D target			
	MRPCs	AC-LGAD	μrPICOSEC		SiPMs	MCP-PMTs	LAPPDs	μrPICOSEC
Time resolution (ps)	20 – 70 ✓	20 🗸	25 🗸	Time resolution				
Rate (MHz / cm ²)	0.05 ×	N/A	> 1 🗸	(ps)	< 100	< 100	50 🗸	50 🗸
Position resolution (mm)	~ 10 ×	0.030 ✓ (claim)	< 1mm 🗸	Position resolution (mm)	> 1 ×	1×	0.3 − 1 ✓	< 1 🗸
Performance in	Vec		Maria	Performance in high B-field	Yes	Limited	Limited	Yes 🗸
high B-field	Yes	Yes	Yes 🗸	Radiation	dark	N/A	N/A	Yes 🗸
module size	module size $20 \times 20 \text{ cm}^2 \checkmark$ N/A $20 \times 20 \text{ cm}^2 \checkmark$	$20 \times 20 \text{ cm}^2 \checkmark$	hardness	current ×				
	,			Cost (\$ M / m ²)	0.8 – 1 ×	> 1 ×	0.8 – 1 ×	0.2 – 0.4 🗸
Cost (\$ M / m ²)	0.2 – 0.4 🗸	High ×	0.2 − 0.4? ✓	,				

Radiation Detector & Imaging Group

IEEE NSS MIC RTSD 2023 Vancouver - 11/04/2023


	Standard µRWELL detector	µrPICOSEC: picosecond uRWELL detector				
Primary electrons production	Ionization of gas molecule by charged particles, typically, 3 mm gas \rightarrow limitation for timing performance					
Amplification mechanism	Primary charges drift to μ RWELL amplification stage \rightarrow amplification with typical gain of 10 ⁴	Photoelectrons are pre-amplified in high e-field in 100 to 200 um gas then a second amplification by μ RWELL \rightarrow total gain can reach 10 ⁷				
Signal collection structures	Strips, pads, large capacitance, high rate	Pads, small capacitance critical for high S/N				
Position resolution	~50 to 100 µm space point resolution	To be evaluated				
Timing resolution	~ 4 ns with specific gas mixture	Goal: 25 ps for charged particle Goal: 50 to 100 ps for single photon detection				
Area of application	Tracking: large-area, low-cost, precision position	PID: Time of flight (TOF) & photosensors for Cerenkov detectors				
Standard µRWELL	μrPICOS	EC				
		0.1 mm gas				


*

µRWELL-PICOSEC

Radiation Detector & Imaging Group

Best time resolution for 1 p.e.

Gas mixture (Neon-Ethane-CF4)	U _{Amp} (V)	U _{Drift} (V)	echarge (pC)	amplitude (mV)	σ _{tres.} (ps)
80-10-10	275	525	8.58 ± 0.13	166.3 ± 0.2	43.89 ± 1.00
89-2-9	255	445	1.69 ± 0.01	31.56 ± 0.44	112.15 ± 4.03
80-20-0	270	470	0.54 ± 0.01	21.61 ± 0.18	129.21 ± 6.03
85-15-0	310	395	0.74 ± 0.01	22.83 ± 0.21	113.48 ± 4.66
90-10-0	340	340	0.82 ± 0.01	20.72 ± 0.09	150.23 ± 3.17
95-5-0	230	375	1.13 ± 0.01	22.98 ± 0.16	181.09 ± 8.91

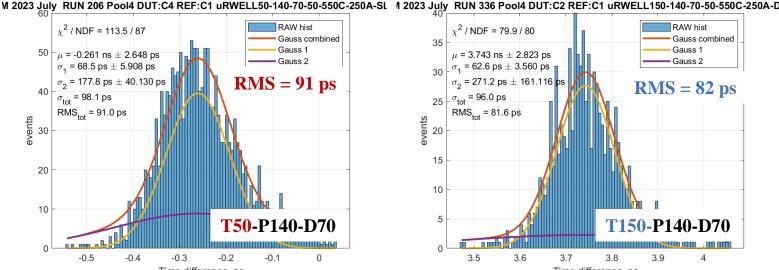
- Ethane+CF4 allows higher electric fields and thus better time resolution
- Improvement with Ethane: less gain but narrower signal at higher field
- Optimum mixture of only Neon-Ethane reached at 85-15

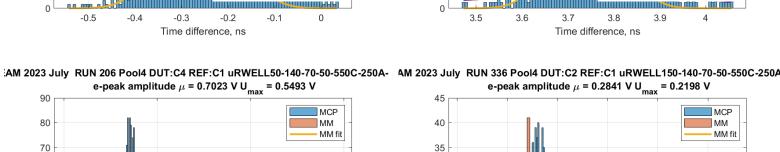
Lukas Sohl RD51 miniweek 11/02/2020

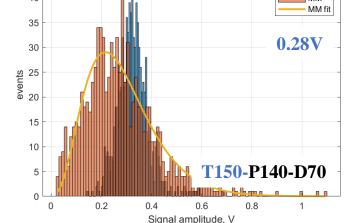
11

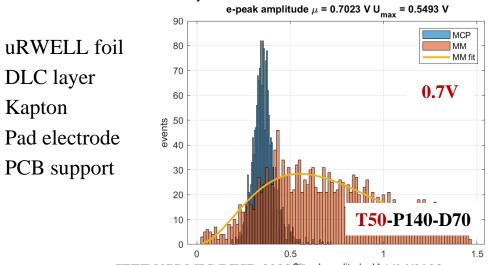
Lukas SOHL

µRWELL-PICOSEC: Kapton thickness comparison (07/2023) Jefferson Lab


ISS MIC RTSE


First µRWELL-PICOSEC prototype


- Single-pad small prototype **
 - 1 cm diameter active area
 - 3 mm thick radiator + **DLC photocathode**
 - Sensor: 50 µm µRWELL on 50 µm Kapton
 - Holes parameters: $140 \mu m / 70 \mu m / 50 \mu m$
- First tests with LED source (GDD lab, 12/2022) *
 - Poor timing compared to MM-PICOSEC


DLC layer

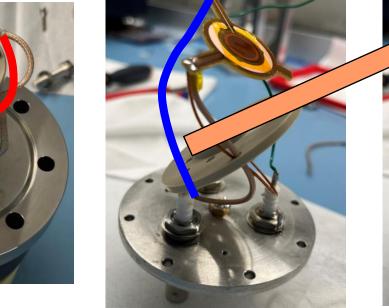
Kapton

IEEE NSS MIC RTSD 2023 Signal amplitude_ VI 1/04/2023

Radiation Detector & Imaging Group

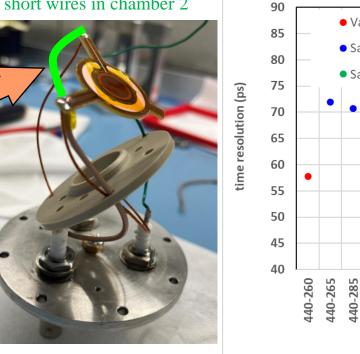
Cross section view of

µRWELL-PICOSEC PCB

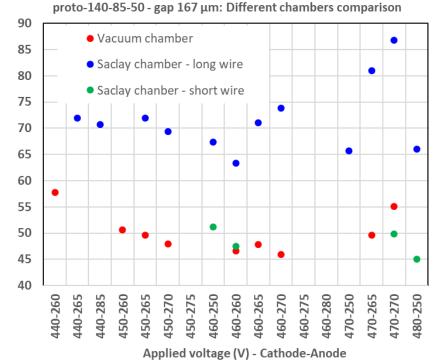

Т

µRWELL-PICOSEC prototype

Jefferson Lab


- Single-pad small prototype 1 cm diameter active area 3 mm thick radiator + CsI photocathode Sensor: 50 μ m μ RWELL on 50 μ m Kapton *
 - Holes parameters: 140 μ m / 70 μ m / 50 μ m First tests with LED source (GDD lab, 12/2022)
 - Poor timing compared to MM-PICOSEC

Short wires in chamber 1



long wires in chamber 2

short wires in chamber 2

T150-P140-D85

