

Kinematic fitting for inclusive physics and tracking studies for the ePIC detector

L. Gonella, P. G. Jones, <u>S. Maple</u>, P. R. Newman EIC UK Meeting 1 March 2024

Overview – Tracking Studies

- Much work has been done since the Yellow Report to converge on a tracker design ahead of the TDR
- This section showcases some of the studies which informed the geometry layout in the most recent design (craterlake)

Tracking requirements

- High precision, low material tracker required for EIC physics program
 - Precise measurement of scattered electron (or hadrons) to reconstruct DIS kinematics
 - Momentum measurements for e.g. invariant mass resolution, E/p etc
 - Jet measurements (need tracks for particle-flow)
 - Determination of primary vertex, secondary vertex separation

Tracking requirements from PWGs								
			Momentum res.	Material budget	Minimum pT	Transverse pointing res.		
η								
-3.5 to -3.0					100-150 MeV/c			
-3.0 to -2.5	-	Declaward	σp/p ~ 0.1%×p ⊕ 0.5%	~5% X0 or less	100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 40 µm		
-2.5 to -2.0	1	Detector	σp/p ~ 0.05%×p ⊕ 0.5%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm		
-2.0 to -1.5	1				100-150 MeV/c			
-1.5 to -1.0	1				100-150 MeV/c			
-1.0 to -0.5]		σp/p ~ 0.05%×p ⊕ 0.5%		100-150 MeV/c	dca(xy) ~ 20/pT μm ⊕ 5 μm		
-0.5 to 0	Central	Parrol						
0 to 0.5	Detector	Darrei						
0.5 to 1.0]							
1.0 to 1.5	1	Forward Detector	σp/p ~ 0.05%×p ⊕ 1%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 20 µm		
1.5 to 2.0	1				100-150 MeV/c			
2.0 to 2.5					100-150 MeV/c			
2.5 to 3.0	1		σp/p ~ 0.1%×p ⊕ 2%		100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 40 µm		
3.0 to 3.5	1				100-150 MeV/c	dca(xy) ~ 30/pT µm ⊕ 60 µm		

ePIC tracker design informed by desire to meet **momentum and DCA_T resolution requirements** set by physics working groups

Simulation procedure

- Negative pions generated uniformly in p_{τ} for $0 < p_{\tau} < 10$ GeV over η range -3.5 < $\eta < 3.5$
- Propagated by Geant4 (Fun4All or EPIC-Software)
- Tracks reconstructed, momentum and DCA binned in η and p_{τ}
- Resolution extracted from fit applied over $\pm 2\sigma$ range to p_{rec} and DCA distributions in bins of p or p_{τ}

Proposal Silicon Vertex Tracker

- From the call for proposals came a new baseline detector:
 - Barrel: 5 Si MAPS layers with 3.3 < r < 22.68 cm complemented by 3 μRWELL layers at r = 33, 51, 77 cm
 - Endcaps: 4 Si MAPS Disks in electron going direction with -106 < z < -25 cm and 5 Si MAPS Disks in hadron going direction with 25 < z < 125 cm

Talks describing this geometry in more detail can be found here <u>https://indico.bnl.gov/event/15489/</u>

Tracker from

Reference

Detector

Proposal Silicon Vertex Tracker

 $\rightarrow\,$ Update outer barrel material estimate to include support and services

→ PWG momentum resolution requirement no longer met

→ Reconfigure barrel layout

Barrel reconfiguration – Vertex layers

- Radii of vertex layers determined by
 - Size of reticule
 - Beampipe bakeout requirements (5mm clearance)

- Opt for 2 sensors per layer:
 - Would need to modify stitching plan
 - r = 36/42/48 mm

Vertex performance comparisons

[mm]

20

10

- Simulations for 4 vertex configurations:
 - Realistic reticule, 2 half layer
 - r = 36/42/48 mm
 - Active length = 24cm
 - Realistic reticule, 4 quarter layer:
 - r = 36/48/60 mm
 - Active length = 27cm

Some difference in DCA_{T}

- \rightarrow depends distance between r₁ and r₂
 - \rightarrow (r₂ r₁) is an important parameter

• Proposal config:

10

• r = 33/43.5/54 mm

80

70

10

[mm]

PWG requirement

1.5T, Vertex 36-57mm

1.5T. Vertex 36-48mm

1.5T, Vertex 36-60mm

 p_{T} [GeV/c]

1.5T, Vertex 33-54mm, 0 ≤ η ≤ 0.5

PWG requirement

1.5T, Vertex 36-57mm

1.5T. Vertex 36-48mm

1.5T, Vertex 36-60mm

 p_{T} [GeV/c]

▼ 1.5T, Vertex 33-54mm, 0.5 $\leq \eta \leq 1$

- Proposal config moved at 5 mm from beam pipe
- r = 36/46.5/57 mm

Barrel Reconfiguration

Slide from E. Sichtermann <u>https://indico.bnl.gov/event/16261/</u>

9

Craterlake Barrel Performance

Disks Optimisation

- Disks spread over **largest lever arm** available
- # of Disks is compromise between resolution and redundancy
- Many studies performed throughout yellow report and call for proposals
- More disks increase material, giving worse resolution, but increasing redundancy
- Larger lever arm between 1st and 2nd disk improves DCA_T resolution
- <5 disks gives insufficient η coverage</p>

Craterlake Disks Performance

- 5 Disks per side
- Occupy full available lever arm
- Challenging requirements in backwards region with 1.7T field

DISKS	+z [mm]	-z [mm]	X/X0 %
E/HD0	250	-250	0.24
E/HD1	450	-450	0.24
E/HD2	700	-650	0.24
E/HD3	1000	-900	0.24
E/HD4	1350	-1150	0.24

Summary – Tracking Studies

- Simulation studies showed that optimisation of proposal tracking config was required
- Barrel region reconfigured \rightarrow central resolution requirements met
- Disk layout chosen to optimise resolutions → still challenging to meet requirements in these regions with 1.7T field
- Passive material has notable effect on momentum and DCA_T resolution → simulations must be kept up to date with R&D progress on low material solutions

Overview – Kinematic Fitting for inclusive DIS

- Future e-p colliders coming → can use this time to make sure we get the most out of them.
- Event by event kinematic fit makes full use of all information to reconstruct inclusive kinematics with high precision.
 - This has been looked at in the context of ZEUS using smeared MC (see paper from R. Aggarwal and A. Caldwell <u>https://arxiv.org/abs/2206.04897</u>)
 - \rightarrow The work shown here demonstrates feasibility with full simulations of ePIC and H1
- Overconstraint allows us to reconstruct energy of possible ISR photon → effectively lowers electron beam energy, extending kinematic reach.

Inclusive NC DIS Kinematics

- Inclusive DIS kinematics can be reconstructed from <u>two measured quantities</u> $\rightarrow \vec{D} = \{E_e, \theta_e, \delta_h, p_{t,h}\}$
 - Where δ_h is $E p_z$ sum of all particles in the Hadronic Final State: $\Sigma E_i(1 \cos \theta_i)$
 - \mathbf{P}_{th} is the transverse momentum of the HFS
- Resolution of conventional reconstruction methods depend on:
 - Event x-Q²
 - Detector acceptance and resolution effects
 - Size of radiative processes

Electron method	JB method	e-Σ method	Double Angle method	
$Q^2 = 2E_e E'_e (1 + \cos \theta_e)$	$y = \frac{\delta_h}{2E_e}$	$Q_{e\Sigma}^2 = Q_e^2 \left y_{\Sigma} = \frac{\delta_h}{\delta_h + \delta_e} \right $	$y_{DA} = rac{lpha_h}{lpha_h + lpha_e} \left \left lpha_{e/h} = an rac{ heta_{e/h}}{2} \right ight $	
$y = 1 - \frac{E'_e}{2E_e} (1 - \cos \theta_e)$	$Q^2 = \frac{p_{t,h}^2}{1-y}$	$x_{e\Sigma} = \frac{Q_{\Sigma}^2}{sy_{\Sigma}} \left Q_{\Sigma}^2 = \frac{p_{t,e}^2}{1 - y_{\Sigma}} \right $	$Q_{DA}^{2} = \frac{4E_{e}^{2}}{\alpha_{e}(\alpha_{e} + \alpha_{h})} \qquad $	

Kinematic Reconstruction for EIC – A Brief History

No single method wins everywhere!

- Detailed simulations performed, reconstruction methods chosen to optimise resolutions throughout phase space
 - → Resolution throughout phase space allowing 5 (log) bins per decade in x and Q^2
- Coverage driven by acceptance:
 - $0.01 < y < 0.95, Q^2 > 1 \text{ GeV}^2$
- Lower y accessible → however it's easier to rely on overlap between data at different √s

What if we use all available information?

- Best reconstruction should be possible using all measured quantities simultaneously
 - One approach is to use a Neural Network https://arxiv.org/abs/2110.05505
 - Can alternatively perform a kinematic fit of measured quantities.

Kinematic Fit (KF) Reconstruction

- Kinematic fit of <u>all 4</u> measured quantities:
- Extract DIS kinematics, and energy of a possible ISR photon: $\vec{\lambda} = \{x, y, E_{v}\}$

Kinematic Resolutions at ePIC (EIC Project Detector)

- Simulations in ePIC software:
 - 18x275 GeV² ep
 - Q² > 1 GeV²
 - No QED Rad

Resolution

KF matches or beats conventional recon methods except e-method at high y *

© 0

18

<u>Mean</u>

KF shows low bias

Kinematic Fitting at H1

- Simulations are one thing but will it work with real data?
- Perform kinematic fit reconstruction on H1 e⁺p 03/04 MC+Data
- Use a standard H1 high Q² event selection
 - $E_{e} > 11$ GeV in Lar Calorimeter
 - $(E-p_z)_{total}$ cuts removed so still have ISR
 - For plotting, require 0.01 < $y_{e\Sigma}$ < 0.6 and Q² > 200 GeV²

ISR from Kinematic Fitting at H1

 ISR energy estimate based purely on event kinematics can be found:

 $E_{\gamma} = E_{e,beam} - \frac{1}{2}\Sigma_{total}$

- Where Σ_{total} is E-p_z sum of all particles in event (~2E_e if no ISR)
- Peak in reconstructed Σ_{total} is broad

 → need to be careful not to
 attribute to ISR that which could be
 caused by a resolution effect
- Prior for E_v in KF helps avoid this

ISR from Kinematic Fitting at H1

but drastically overestimates amount ISR

ISR from Kinematic Fitting at H1

- Amount of ISR predicted by KF matches quite well for E_{v,true} > ~7 GeV
- Σ_{total} constraint approach overestimates until $E_{y,true} > -12 \text{ GeV}$

Some sanity checks...

- Use pulls to look for bias between data/MC
 - Pull of z defined as $(z_{fitted}^{-}-z_{reco}^{-}) / RMS(z_{fitted}^{-}-z_{reco}^{-})_{MC}$
- E_{ele} (pull) θ_{ele} (pull) 10⁵ Djangoh Djangoh Data + Data 10⁴ 10^{3} 10² $\Sigma_{\rm h}$ (pull) p_{т h} (pull) Djangoh Djangoh + Data 10⁻¹
- ISR prediction by KF shows good agreement between data and MC

Why identify ISR?

- ISR lowers the electron beam energy
 - Scattered electrons in low Q² events don't enter main detector
 - \rightarrow lower energy electrons are scattered at larger angles that may be within the detector acceptance
 - \rightarrow kinematic reach extended

Summary – Kinematic Fitting for inclusive DIS

- Best possible reconstruction should be achieved by using all available information together: KF method is one way → shows good resolution with ePIC simulation
- KF helps identify ISR \rightarrow offers improvement compared to approach using Σ_{total} constraint
- Keeping events with hard ISR increases kinematic reach \rightarrow applications

Extending to lower Q²

- Previously restricted events to high Q² events with electrons scattered into barrel
 - Extended to events with $Q^2>1GeV^2 \rightarrow Requires$ parametrisation of dE/E and d θ in pseudorapidity bins

A couple of caveats:

- At low p_T an issue with truth track seeding in simulations at the time results sees dp/p improve at low p → unphysical ("fixed" in eicrecon)
- Electron "finding" as largest pT
 electron → bad approximation at
 high y