

1

Far Backwards Overview Pair Spectrometer Calorimeter Design

Alex Smith alex.smith3@york.ac.uk 01/03/24

> Dr. Nick Zachariou Prof. Dan Watts Dr. Stephen Kay

Supported by: STFC Grants - ST/V001035/1, ST/W004852/1 and STFC Studentship - 2824381

60

40

- The Far Backwards Region
 - Region covers 5 m to 60 m.
 - A key goal is to determine luminosity.
 - Peak luminosity of 10³⁴ cm⁻² s⁻¹.
 - Requirement of 1% uncertainty for absolute luminosity and 10⁻⁴ relative uncertainty.

20

z (m)

-60

-40

-20

Bremsstrahlung Process

• Luminosity is determined from cross section and rate.

 Bremsstrahlung cross section is well understood.

• System is required to measure rate of photons and electrons.

Polarisation and Cross Section

UNIVERSITY

Polarisation is a key science requirement for the EIC.

• Polarised beams have a negligible effect on bremsstrahlung.

 <u>Bremsstrahlung cross section with</u> <u>polarized beams for luminosity</u> <u>determination at the EIC</u>

Figure - Dr. Dhevan Gangadharan, UoH. 4

Sections of the FB Region

• Direct Photon Calorimeter.

• Pair Spectrometer.

• Low Q² Tagger.

Direct Photon Calorimeter

 High resolution calorimeter to count the number of bremsstrahlung photons.

• Used successfully at HERA.

- Issues with higher rates at EIC:
- Up to 30 photons per bunch,
- Bunch spacing of 10 ns.

Low Q² Tagger

 Detects low Q² electrons from processes including bremsstrahlung.

 Two tagging stations off the electron beamline

 Provides a second luminosity measurement as well as information on other physics.

Pair Spectrometer

• Thin beryllium converter produces e+ e- pair from photon.

Two detectors count rate of pairs

• Less affected by high radiation.

 5σ gap between the calorimeter for the bremsstrahlung beam.

Figure - Dr. Dhevan Gangadharan, UoH. 9

Pair Spectrometer Rates

- 1% of photons converted into
 - pairs.

• Not all events will see hits in both detectors.

• Coincidence rate is high even with low conversion probability.

PS Calorimeter Design

• Spaghetti calorimeter design, plastic scintillating fibres in tungsten powder.

Powder density approximately 11 g cm⁻³.

• Fibre diameter and spacing both 0.5mm.

• Volume ratio of 4:1, tungsten to fibre.

PS Calorimeter Design

• Tiles consisting of 540 fibres will be the base construction unit.

• 3 tiles will be stacked to produce a 180 mm tall layer.

• This tile size limits the siPM size options.

PS Calorimeter Design

 Spaghetti calorimeter design, plastic fibres in tungsten powder.

 Layers are alternated between X and Y to detector shower profile.

• Overall size of 18³ cm³.

Density	9 g cm-3
Moliere Radius	15 mm

Pair Spectrometer Dose

• Beam angle in Y seen in dose in Y fibres.

• Energy deposition is concentrated in certain regions.

• Energy deposition is shown for one day.

Pair Spectrometer Dose

• Beam angle in Y seen in dose in Y fibres.

• X Fibres see a very high dose concentrated in the centre.

• No neutron dose calculations available yet.

Sampling Fraction + ERes

• Coincidence acceptance is between 10 - 18 GeV.

• Sampling fraction is ~3%, energy resolution is ~6%.

Sampling Fraction + ERes

• Coincidence values shown here.

 Plots show effect of ignoring outer cm of each cal.

 Negligible effect on sampling fraction, whilst energy resolution is improved to ~5%.

Position Resolution

• Difference between reconstructed impact position and actual.

• Shown for top calorimeter, x aligned fibres.

• Assuming SiPM size of 3mm.

Position Resolution

• Difference between reconstructed impact position and actual.

• Shown for top calorimeter, y aligned fibres.

• Assuming SiPM size of 3mm.

SiPM Size/Readout

• Shows plots for y fibres from previous slides using 9mm SiPM.

Position resolution increase of 50%.

Greatly decreases SiPM count.

ML Position Resolution

• Simple neural network can be used to predict impact position.

• Resolution is much greater in x direction than y.

• Y resolution comparable to conventional techniques.

Method	Conventional	ML
Energy Resolution $(\%)$	5	0.0242
X Position Resolution (mm)	3.5	0.00623
Y Position Resolution (mm)	3.5	3.54
X Angle Resolution (°)	N/A	0.00613
Y Angle Resolution (°)	N/A	0.600

ML Assisted Design

• Machine learning can assist in detector design.

• C. Fanelli *et al* used ML algorithms for optimising dRICH design.

 Allows for multiple objectives (cost, resolutions etc.) to be optimised simultaneously.

Summary

The far backwards region is a critical part of the ePIC detector and the scientific program of the EIC, by providing the ability to measure luminosity to a high degree of accuracy.

• The pair spectrometer allows for a complimentary measurement of luminosity, especially relevant at the high luminosities reached by the EIC.

• There is great potential for machine learning algorithms in all parts of detector design and operation.