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INTRODUCTION



EPIC LOW-Q’ TAGGER - INTRODUCTION

ePIC Low-Q” Tagger

- For precise measurements of photoproduction and vector mesons.

- The ePIC Low-Q? Tagger extends the reach of the central detector
down to effectively Q*=0.

- Located after the first group of beamline steering and focusing
magnets.

- Scattered electrons follow a unique path through the magnetic
optics, resulting in a unique measured electron vector.

- Electrons with reduced energy are steered away from the main
beam.

- Transforming the vector back through the magnetic optics accesses
the original scattered vector.

- 4-momentum of the virtual photon interaction can be inferred.

Figure 2: 2 Low-Q? Tagger stations placed beside the
outgoing electron beamline.
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Figure 1: ePIC Low-Q? Tagger in Far Backward region.



EPIC LOW-Q’ TAGGER - ACCEPTANCE
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Limitations

- Integrated acceptance or Quasi-real photoproduction

events.

s: L g - Most events are produced at the highest energy, too
5/ close to the electron beam.

3 - Low energy lost in beamline magnets.

" ’ - Q? gap between central detector due to beamline
x-Q? acceptance showing central and low-Q? tagger. magnet configuration.



EPIC LOW-Q’ TAGGER - RESOLUTION

Electron energy resolution
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Figure 3: Reconstructed kinematics and resolution of Quasi-Real photoproduction
electrons. ¢ has been limited to where 6>1 mrad

Figure 4: Reconstruction of Q?
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EPIC LOW-Q’ TAGGER - DESIGN

Tagger Design

- Two tagger stations covering different energy ranges.

- Tracker consisting of 4 layers of Timepix4 detectors.

- Detector layer consisting of tiled Timepix4 ASICs using TSV.
- SPIDR4 readout

- Calorimeter based on the luminosity systems design for high
rates.

Sensor bias Timepix4 power

Control board Slow

5 ® control
Carrier board
° o

Figure 6: CAD model of a tagger station

Figure 5: SPIDR4 readout - K. Heijhoff et al 2022 JINST 17 P07006
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EPIC LOW-Q’ TAGGER - COMPLICATIONS
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EIC complications 3 F Colemetvaning
3 joeL + Quasireal photoproduction
. ' ~— Pythia6
- Scattered electrons from DIS events will be swamped by a background of Sk i

— Bremsstrahlung

Bremsstrahlung. 10

- Atotal of 0(10) electron tracks from the IP are anticipated per bunch crossing at full ep =
luminosity (10 ns).

107 T
- Additional, significant but currently unquantified backgrounds, from electron beam gas /
interactions and synchrotron radiation. 104
- Need to be able to read out all hits and pick out the tracks from the interaction of -
interest.
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Figure 8: Cross section of
Bremsstrahlung (Blue) and Quasi-Real
photoproduction events from two
models (Red and Green). Purple
shows coincidence scaled
Bremsstrahlung rate.
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Figure 7: Left - Distribution of Bremsstrahlung (blue) and signal Quasi-real (red) events
across Q°. Right - Fraction of signal ?
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EPIC LOW-Q’ TAGGER - FOUR KEY CHALLENGES

Challanges

- EIC integration
- Interface between the accelerator and detectors needs to have minimal
effect on either.
- Impedance on electron bunches at 10 ns a big concern.
- Ideal measurement would have detector in the vacuum.
- Ideal accelerator would have perfect cylindrical pipe.
- Compromise with exit window and thin foil.
- Changes coming to beamline magnets might throw everything up in the
air.
- Studies to be carried out by Lancaster University.
- Data Rate
- Background Rejection

- Momentum Reconstruction

Detector layers in
secondary vacuum
2mm Carbon fibre window \

Luminosily systems exit

100um Copper foil

Figure 9: Design of tagger station. Carbon fibre
vacuum exit window perpendicular to the beam to
minimize material. Sloped copper foil to minimize
beam impedance.



EPIC LOW-Q’ TAGGER - FOUR KEY CHALLENGES
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Investigating Graph neural networks - See Backup
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- Momentum Reconstruction

Tagger Moo 1, ayer 0 - Mean Bremssranung ra pe 32632 poelgrocp. Togger mockse 2, ayer O - Mean Bremsirahung rae pr 32132 poelgrovp.

Average Rate [Hz/55 um pixel]

£
8
5
b4
4
)
g
H

Timepix4, a large area pixel detector readout chip which
can be tiled on 4 sides providing sub-200 ps timestamp
binning
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https://iopscience.iop.org/article/10.1088/1748-0221/17/01/C01044
https://iopscience.iop.org/article/10.1088/1748-0221/17/01/C01044
https://iopscience.iop.org/article/10.1088/1748-0221/17/01/C01044

EPIC LOW-Q’ TAGGER - FOUR KEY CHALLENGES

Challanges

- EIC integration
- Data Rate

- Background Rejection

- Synchrotron background can be eliminated through hits not belonging
to a track or producing clusters. Not studied...

- Electron beam-gas gives a different distribution of vectors than
electrons from interaction point.

- Limited separation of interaction point Bremsstrahlung - Statistical
methods will be required.

Figure 9: Electron beamgas rates originating from
upstream of the IP

Electron ID Response
- Quasi Real
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- Momentum Reconstruction
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Figure 10: NN Bremsstrahlung vs QR response. 1



EPIC LOW-Q’ TAGGER - FOUR KEY CHALLENGES

Challanges

- EIC integration
- Data Rate

- Background Rejection

- Momentum Reconstruction
- Not trivial reconstruction through accelerator magnetic optics.
- Machine learning trained on measured electron vector vs generated
vector.
- Not yet considered are instabilities/uncertainties in magnetic and
online calibration/training,

Figure 9: Correlations between the measured and
truth variables.
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STATUS AND PLANS

Tracker Calorimeter
Date Date |
Jan 2024 2 x SPIDR4 kits in Glasgow May 2025 Final design complete,
May 2024 Engineering test model review, start of construction
Summer 2024 Engineering tests in Europe Oct 2030 Ready for installation
September 2024 | Engineering + DAQ tests in JLab
May 2025 Final Design complete
Oct 2026 Start of construction
Oct 2030 Ready for installation




CONCLUSIONS

Conclusions !-.
- Design advanced, underwent preliminary design .'.'
r§V|ew F-eb 2024. | | | ."’
- Simulation, analysis and benchmarks included in ePIC ."
software framework. s - .f' [
. . . . L] g
- Some items still not in production branch so need of' -
custom analysis. .'.'
- Investigating more advanced machine learning .'.‘

methods for FPGA data reduction.

- Waiting for beamline to settle before progressing with
integration studies.

- Hardware received and starting tests.

- Questions?
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THE TRACKING CHALLENGE

Challenge

- From a varying number of Npj;s reconstruct an unknown number

of Mpam'des-

- Conventional approaches require looping over valid

combinations of hits.

- High order of combinations to check computationally expensive.

- Latency per sample can fluctuate wildly.
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Current Approach

- Separate hits by module.
- Cluster hits in layer.

- Linear least squares fit and x? filter all
combinations of hits in 4 layers.

- Project track onto common plane.

- Use position and direction vector as input
into DNN, reconstructing electron
momentum at interaction vertex.

- Good for single particle simulations but
doesn't extend well for backgrounds and
streaming.



OBJECT CONDENSATION
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- Object Condensation method presented by Jan Kieseler 2020".

Fig. 1 Tllustration of the cffective potential that is affecting a vertex
- Graph network architecture taking each hit as a node. belonging to the condensation point of the object in the centre, in the
. 2 presence of three other condensation points around it
- GravNet layers pass messages between closest neighbours in learned space”.
After passing through the graph layers, every node now has the information encoded for a track.

A single hit per track is identified as a "condensation point”, should provide the best estimate of track

properties. Is this a sledgehammer to crack a nut for the
2
Hits from the same track are clustered around the the condensation point. LOW_Q tagger? _Maybe"- But the unknown
- Classification and regression can additionally be carried out on the encoded information. baCkgrOU nds are eXpECtEd to be h |gh

Recent study on simulations for Charged Particle Tracking at the High Luminosity LHC3.
Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph, and image data
Learning representations of irregular particle-detector geometry with distance-weighted graph networks
An Object Condensation Pipeline for Charged Particle Tracking at the High Luminosity LHC


https://link.springer.com/article/10.1140/epjc/s10052-020-08461-2
https://link.springer.com/article/10.1140/epjc/s10052-019-7113-9
https://arxiv.org/abs/2309.16754
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OBJECT CONDENSATION LOSS

Latent Space Potential Loss Beta Loss
- Loss from the potential calculated from hits from each particle with - The produ;t of 8 in the potential loss pushes 3 — 0
maximum . for every hit.
- The potential is scaled by the product of the charges - Need one high g for each track for condensation point
qi = arctanh®B; + Gpin to form. Force sum over B hits from track = 1
- Awell trained network should see only hits belonging to the same < lossg =1-8
particle within r<1.
Noise Loss
\ T
= —— Attractive potential : ma - B values for noise are not pushed to 0
- Repulsive potential ™1 .
0 - Additional loss term is needed, summing/averaging
e over noise hit 8 values.
o L. . Additional Losses
* - Regression/Classification tasks can be performed per
0 05 1 5 node or subset of nodes as required.
s TS T s e - Requires loss balancing via hyperparameters.




SIMULATION STUDIES

Event sample

- Mixed Bremsstrahlung-QR photoproduction events
generated using GeTaLM*- Custom generator for EIC.

- Single QR photoproduction electron from 18x275 GeV
collision.

- Bremsstrahlung sample from maximum luminosity
18x275 GeV bunch crossing. Average 0(10) per event.

- No additional backgrounds input, only originating
from secondaries produced by Geanté.

Simulation

- Initial studies were carried out using the default ePIC

geometry. A custom ePIC geometry configuration is
required for full truth matching.

- Default geometry currently doesn’t save secondary

particles outside of central tracking region.

- Around 30% of events contain particles which create

a shower of secondary hits which all get handed the
truth id of the primary.

- Initial studies cleaned this data by cutting on a max 4

hits per track.

- Custom geometry extends the tracking region.

GETaLM: A generator for electron tagger and luminosity monitor for electron - proton and ion collisions


https://www.sciencedirect.com/science/article/abs/pii/S0010465521003635

TRACK IDENTIFICATION METRICS

- Learned Latent Space (Epoch 320)
Track Building

Track 0
Track 1
- Cut on B to select condensation points. Track 2 .
Track 3
- Calculate distance between condensation points and other 3 Track 4
points. Track §
e Noise

- For each layer, select hit closest to condensation point.

~

Tracking Metrics

- True positive (TP) defined as a true track predicted by
network - All hits belong to the same track.

Coordinate 1 [AU)

-

- False Positive (FP) defined as any other track predicted by
network.

- Efficiency: Proportion of true tracks that were recovered by 0
the network. Expected number of true tracks (N)
. Ip
N

- Purity: Proportion of true tracks in all tracks predicted by the

0 1
network. Coordinate 0 [AU]

. TP .
TP+FP 2



TRAINED METRICS

High occupancy data sample combining 10 events into
one with maximum 82

Metrics vs Number of Tracks per Event

Original data sample with maximum 15 true tracks per
event.

Metrics vs Training Epoch
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Figure 11: Tracking metrics against the number of true tracks in

Figure 10: Tracking metrics as a function of training epoch. an event.
22



ADDING INEFFICIENCIES

80% detector hit efficiency added - 20% of hits removed from sample.

Metrics vs Number of Layers Hit per Track
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Figure 12: Hits from tracks in 4 layers with inefficiencies added.
Figure 13: Tracking metrics against the number of hits per track.

Real detector efficiency expected to be >99%



ADDING ARTIFICIAL NOISE

Number of Noise Hits per Event
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Figure 14: Distribution of artificial noise hits
added to event.
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Figure 15: Sample event showing
tracks identified in module 2 with
inefficiencies and noise added

Metrics vs Number of Noisy Hits per Event
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Figure 16: Efficiency and purity as a
function of included noise



QUASI-REAL TRACK CLASSIFICATION
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Figure 17: Rates per trigger as a function of Q for Bremsstrahlung (blue) and 200
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Quasi-Real Identification

- Appears to do better than a simple Q? cut by using the full electron
momentum. Figure 18: Learned response showing separation of

- Only has access to the relative momentum distributions of the samples, QR and Bremsstrahlung events.

cannot beat the beam divergence.

- Exclusivity restrictions imposed by other detectors should improve this. 25



RECONSTRUCTING MOMENTUM

- Using custom ePIC geometry.

jury

o
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vl

. . —_ B Primary
- Only hits from single event. ]
/ . X . 315— [\:I Secondary
- Refurbished code to allow direct use of =
Ragged Tensors®. E 10]
- Momentum loss only measured for E i
primary tracks. s
, A = 5
- Condensation point allowed for any track g
>3 hits = 1
: ificat] i 0
Cl§55|ﬁcat|on of whether an trqck is frgm 0 : 10 15 _ 0’5 10
primary vertex or a secondary interaction. Predicted Momentum [GeV] Response
- Separated data by tagger module. (Tagger . ) .
1 shown) Figure 19: Predicted momentum for all Figure 20: Learned response
s condensation points. separating condensation points from

primary and secondary tracks.



RECONSTRUCTING MOMENTUM

- Using custom ePIC geometry.

4 1044 .
- Only hits from single event. S5 ] Primary
) ) 8 i [ Secondary

- Refurbished code to allow direct use of =

Ragged Tensors®. E 10]
- Momentum loss only measured for E i

primary tracks. s

, A = 5

- Condensation point allowed for any track g

>3 hits = 1
- Classification of whether an track is from 00‘ L U S B W 05 10

primary vertex or a secondary interaction. Predicted Momentum [GeV] Response
- Separated data by tagger module. (Tagger . ) .

1 shown) Figure 19: Predicted momentum cut Figure 20: Learned response

s on primary classification response separating condensation points from

>0.8. primary and secondary tracks.



FUTURE PLANS

Shared hits

- Hits with contributions from more than
one track will have conflicting potentials.

- In order to allow these to minimize to 0
loss, a potential with a repulsive core may
be considered

loss = Attractive potential

- Repulsive potential

0.5 1 1.5 2

—0.5

Balancing losses

- Current results produced in a variety of networks, need to bring together.

- Simultaneous training on the condensation, classification and regression

requires weighted losses.

- Hyper-parameters need optimisation to get the best results, ideally

automatically tuned.

Improvements and Integration

- The ePIC simulation is rapidly evolving.
- Needs particles to potentially producing hits in multiple pixels to be clustered.

- Addition of beamgas and synchrotron backgrounds will increase the number of

hits.

- Multi-class classification of hit source can be investigated,
- Integrate the training and inference into the ePIC software stack.

- How does this best translate to streaming readout data?
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