Investigation of the underlying event in photon-initiated processes

J.M. Butterworth¹, I.M. Helenius², J.J. Juan Castella³, S. Sanjrani⁴, and M. Wing¹

¹University College London, London, UK
²University of Jyvaskyla and University of Helsinki, Finland
³University of Cambridge, Cambridge, UK
⁴University of Bristol, Bristol, UK

December 2023

Abstract

The underlying event in photon-initiated processes has been investigated. This has been extensively studied in proton-proton (pp) and proton-antiproton $(p\bar{p})$ collisions where models of the underlying event can describe data in such collisions over a wide phase-space, including the large range in energy. This leads to a single set of parameters for a given model that can be used to give a reasonable description of $pp/p\bar{p}$ data. These same parameters, as derived using the PYTHIA Monte Carlo model, are not able to describe data from $\gamma\gamma$, at LEP, and γp , at HERA, collisions, where on average fewer interactions are observed. A single model and set of parameters can, however, describe simultaneously the $\gamma\gamma$ and γp collisions. This suggests that multi-parton interactions are different when the process is initiated by photons compared to purely hadronic collisions. Processes which are induced by photons, such as $\gamma\gamma$ events at the LHC or at future colliders such as the EIC should therefore choose the appropriate model of the underlying event.