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Taxonomy
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AI: The field of computer science that focuses on creating machines 
or software capable of intelligent behavior, emulating human 

cognitive functions such as learning, reasoning, problem-solving, and 
perception.

ML: A subset of AI that enables computers to learn 
from data without explicit programming

RL: Learning through trial 
and error, optimizing 
actions based on rewards

DL: A subset of ML that 
focuses on artificial neural 
networks with many layers

Uncertainty



Main References for AI/ML in HE(N)P
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https://eic.ai

Several workshops identified the scientific challenges and opportunities at 
the intersection between AI and high energy nuclear physics research

A. Boehnlein, M. Diefenthaler, C. Fanelli et al., Machine learning in nuclear 
physics, Rev. Mod. Phys. 94, 031003 (2022) and references therein

https://iml-wg.github.io/HEPML-LivingReview/

https://doi.org/10.1103/RevModPhys.94.031003
Arxiv:2307.08593 (accepted on Comp. Softw. Big Sci.)

3rd AI4EIC workshop at CUA, Washington D.C.

https://indico.bnl.gov/event/19560/ Key discussion points: need for more benchmarks, uncertainty quantification

https://arxiv.org/abs/2307.08593
https://indico.bnl.gov/event/19560/


Disclaimer
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The following examples have been chosen to emphasize and explore these key topics and opportunities:

● Adaptive Experimentation  / AI-assisted Optimizations 

● “Holistic” analysis — full event information, and real-data 

● Uncertainty Quantification (event-level) and Unfolding with Uncertainty 

● Towards near real-time applications (supported by Streaming Readout)

● ML/DL is ubiquitous in NP and HEP 

● Hard to impossible to summarize multiple topics, and recent works, activities (e.g., recent AI4EIC workshop showed 
an impressive progress in the last year) and opportunities.  

● This is an high-level and incomplete overview of AI/ML applications in NP. Drawing from insights gained at the 
recent AI4EIC at CUA, this talk is approached from an EIC and JLab (experimental) perspective. I will also make 
some examples from LHC and present studies that use benchmark datasets from the LHC community. 

● At AI4EIC, two cross-cutting needs have been identified: 
(i) Establishing Benchmarks and (ii) Uncertainty Quantification



AI-Assisted Detector Design 

5

Provide a framework for an holistic optimization of the sub-detector system  
A complex problem with (i) multiple design parameters, driven by (ii) multiple objectives 

(e.g., detector response, physics-driven, costs) subject to (iii) constraints

● Benefits from rapid turnaround time 
from simulations to analysis of 
high-level reconstructed observables

● The EIC SW stack offers multiple 
features that facilitate AI-assisted 
design (e.g., modularity of simulation, 
reconstruction, analysis, easy access 
to design parameters, automated 
checks, etc.) 

● Leverages heterogeneous computing

Those at EIC can be the first large-scale experiments ever realized with the assistance of AI

Accurate simulations of the passage of particles or 
radiation through matter

Hot take: every optimization problem is fundamentally a multi-objective optimization problem.



AI-Assisted Detector Design
(at EIC)
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(i) Will contribute to advance state of the 
art MOBO complexity to accommodate a 

large number of objectives and will explore 
usage of physics-inspired approaches

(ii) Development of suite of data science tools 
for interactive navigation of Pareto front 

(multi-dim design with multiple objectives)

(iii) Will leverage cutting-edge workload 
management systems capable of 
operating at massive data and handle 
complex workflows

https://ai4eicdetopt.pythonanywhere.com/

Examining solutions on the Pareto front of EIC detectors at different values of the budget can have great cost benefits 

A fractional improvement in the objectives translates to a more efficient use of beam time which will 
make up a majority of the cost of the EIC over its lifetime

BNL, CUA, Duke, JLab, W&M*

[Link to complexity 
studies]

https://ai4eicdetopt.pythonanywhere.com/
https://wandb.ai/phys-meets-ml/AID2E-Closure-1?workspace=user-karthik18495
https://wandb.ai/phys-meets-ml/AID2E-Closure-1?workspace=user-karthik18495


Reconstruction/Identification 
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Tracking Calorimeter

PID-detector Jet Reco

Rev. Mod. Phys. 94, 031003 (2022) 

[1] G. Gavalian, et al. "Using Artificial Intelligence for Particle Track Identification in CLAS12 Detector." arXiv preprint arXiv:2008.12860 (2020). 
[2] G. Gavalian. "Auto-encoders for Track Reconstruction in Drift Chambers for CLAS12." arXiv preprint arXiv:2009.05144(2020). 
[3] L.-G. Gagnon, Machine learning for track reconstruction at the LHC,  2022 JINST 17 C02026 — AI4EIC workshop 
[4] Exa.TrkX: HEP tracking at the exascale. A DOE CompHEP project, https://exatrkx.github.io/  
[5] A. Akram, and X. Ju. "Track Reconstruction using Geometric Deep Learning in the Straw Tube Tracker (STT) at the PANDA Experiment." arXiv:2208.12178 (2022) 
[6] D. Rohr "Overview of online and offline reconstruction in ALICE for LHC Run 3." arXiv:2009.07515 (2020)  https://arxiv.org/abs/2009.07515   

See backup slides



Tracking

8[1] G. Gavalian, et al. "Using Artificial Intelligence for Particle Track Identification in CLAS12 Detector." arXiv preprint arXiv:2008.12860 (2020). 
[2] G. Gavalian. "Auto-encoders for Track Reconstruction in Drift Chambers for CLAS12." arXiv preprint arXiv:2009.05144(2020). 

CLAS12 Tracking

True track False track True track False track

AI-assisted tracking in CLAS12/JLab: 
● Track classification 
● Missing segment generation 
● Denoising drift chamber data

Implemented in the CLAS SW stack as a service. AI-assisted 
tracking provided a 6 times code speedup.
They also implement a Level 3 trigger for identifying electron 
candidates from raw information from DC and ECAL 

ratio

Tracking in NP experiments poses unique challenges:  
(1) Compared to HEP, low track multiplicities and large curvatures 
(lower P and relatively large, non-uniform magnetic fields)  
(2) Typically represents the most substantial CPU resource usage*  

The CLAS spectrometer investigates nucleon and meson structures using a solenoid-torus magnetic field for 
wide acceptance, precise tracking, and efficient charged particle separation with background suppression.

Tracks detected by DCs in toroidal field:
● Each sector has 3 regions
● Each region has 2 Super-Layers
● Super-Layer has 6 layers
● Each Layer has 112 wires
Sector 1

AI

conventional



Tracking
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[1] L.-G. Gagnon, Machine learning for track reconstruction at the LHC,  2022 JINST 17 C02026 — AI4EIC workshop 
[2] Exa.TrkX: HEP tracking at the exascale. A DOE CompHEP project, https://exatrkx.github.io/ 
[3] A. Akram, and X. Ju. "Track Reconstruction using Geometric Deep Learning in the Straw Tube Tracker (STT) at the PANDA Experiment." arXiv:2208.12178 (2022)
[4] D. Rohr "Overview of online and offline reconstruction in ALICE for LHC Run 3." arXiv:2009.07515 (2020)  https://arxiv.org/abs/2009.07515 

Use Graph Neutral Network (GNN) to 
reconstruct tracks  

Embedding : Use all the hits in the 
detector to build a graph 

Filtering : Neural-Network predicts if 
nodes should be connected (can also 
use a connection map)   

experiment independent ML-based tracking in HEP 

Accelerated GNN tracking (IRIS-HEP)

ACTS: a common tracking software

Features: (i) Tracking geometry description, (ii) simple event data model, (iii) most track reconstruction 
algorithms, (iv) example framework with python bindings, (v) performance evaluation algorithms

Provides a testing environment for new tracking algorithms, open detector data 
(based on the TrackML challenge) 

Towards end-to-end pipelines for tracking. 
Kalman Filter remains a powerful tool to completely “throw” away… GPU-accelerated KF 

https://github.com/acts-project/acts 

https://exatrkx.github.io/
https://arxiv.org/abs/2009.07515
https://github.com/acts-project/acts


Neutral showers 
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Showers 
matched to 

charged 
particles 

Photon 
candidate 
showers

Type 
2

Type 
0

Separation of electromagnetic and hadronic interactions (i.e., low energy vs split-offs) in the GlueX FCAL (2800 PbWO4 modules)

Trained on ω→π+π-π0(γγ) (true photons and charged particles interacting with FCAL)

● MLP selected due to ease of implementation within GlueX SW framework 
● Thorough data/MC comparison (agreement within statistical precision) —  

Bkgd reduction of 60% and signal retention of 85% on inclusive π0 data. 

[1] R. Barsotti and M.R. Shepherd 2020 JINST 15 P05021

Showers classified as: 
Type 0 (true photon showers from hadron 
decays, e.g., π0)
Type 1 (from charged particles colliding 
with FCAL)
Type 2 (all other types of showers, e.g., 
split-offs of a Type 1 or background noise)

Goal: distinguish Type 0 from Type 2

energy deposits 
hits 
time
shape asymmetry 

GlueX explores the nature of confinement by studying 
exotic hybrid mesons 



Shower Imaging 
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[1] N. Apadula, et al. "Monolithic active pixel sensors on cmos technologies." arXiv preprint arXiv:2203.07626 (2022).
[2] C. Peng, ML Particle Identification with Measured Shower Profiles from Calorimetry, AI4EIC 2nd workshop (2022)

Imaging Calorimeter 

Hybrid Concept 
Monolithic Silicon Sensors AstroPix 

Scintillating fibers embedded in Pb (Pb/ScFi similar to 
GlueX Barrel Ecal) 

“Sandwiched” 6 layers of AstroPix and 5 layers of Pb/ScFi 
(~1X0) followed by a large chunk of Pb/ScFi 

Total thickness ~43 cm (~21 X0) 

Large amount of data (3D shower imaging) 

ML with shower imaging significantly improves  e/π rejection compared to 
traditional E/p cut — impact on DIS
Separation of γ’s from π0 at high momenta (40 GeV/c) and precise position 
reconstruction of γ’s (<1 mm at 5 GeV) — DVCS and γ physics 
Tagging final state radiative γ’s from nuclear/nucleon elastic scattering at low x 
to benchmark QED internal corrections
PID of low energy μ that curl in the barrel ECal — J/ψ reconstruction and TCS
Improving PID, providing a space coordinate for DIRC reconstruction 

9 layers
6 layers

red: imaging detector and  ML
blue, green and the black: other technology 

and traditional cut-based strategy

ML model: Sequential CNN + MLP

shower examples

https://indico.bnl.gov/event/16586/contributions/68785/attachments/43773/73846/AI4EIC_Chao.pdf


n/γ GlueX/BCAL + Large Language Model

12[1] J. Giroux, P. Moran, K. Suresh, C. Fanelli: Tutorial on 2nd AI4EIC hackathon, 2023 [indico link]

9 layers

BCAL is constructed as a lead and scintillating-fiber calorimeter 
and read out with 3840 large-area silicon photomultiplier arrays

Shower Features

(A) BCAL schematic; (B) a BCAL module side view; (C) end view of the BCAL showing all 
48 modules and (D) an end view of a single module showing readout segmentation in four 
rings (inner to outer) and 16 summed readout zones demarcated by colors

● Participants had (basically) no access to the files, nor to the code editor 

● ChatGPT-based solutions significantly outperformed (human-based) 
expected solutions! Beginner-level were able to submit excellent solutions

● Large Language Model prompt-engineering: write the whole code with ChatGPT

w
eb

-in
te

rfa
ce

https://indico.bnl.gov/event/19560/contributions/83337/attachments/51332/87782/2023%20Hackathon%20Tutorial.pdf


n/γ GlueX/BCAL + Large Language Model

13[1] J. Giroux, P. Moran, K. Suresh, C. Fanelli: Tutorial on 2nd AI4EIC hackathon, 2023 [indico link]

9 layers

What happens when we combine 
physicists to LLM “assistance”:

● Great results: high 
performance (well beyond 
expectations, particularly for 
problem 2 with increased 
complexity) 

● Several winners within 
statistical uncertainties using 
different approaches

● Absolute winner selected by 
minimum number of prompts 
and time of submission 

● What’s next: analysis of these 
data/solutions…

https://indico.bnl.gov/event/19560/contributions/83337/attachments/51332/87782/2023%20Hackathon%20Tutorial.pdf


PID with Cherenkov
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[1] C. Fanelli, J. Pomponi, “DeepRICH: learning deeply Cherenkov detectors”, Mach. Learn.: Sci. Technol., 1.1 (2020): 015010
[2] C. Fanelli, "Machine learning for imaging Cherenkov detectors." JINST 15.02 (2020): C02012.

charged track

Cherenkov photons

DIRC at GlueX is instrumental for PID 

 (x,y,t) hit pattern

Cherenkov detectors will be the 
backbone of PID at EIC 

Photon Yield vs Track Angle 

(P∈[0,5] GeV/c)

Changing Kinematics

Fixed Kinematics



PID with Cherenkov
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[1] C. Fanelli, J. Pomponi, “DeepRICH: learning deeply Cherenkov detectors”, Mach. Learn.: Sci. Technol., 1.1 (2020): 015010
[2] C. Fanelli, "Machine learning for imaging Cherenkov detectors." JINST 15.02 (2020): C02012.

charged track

Cherenkov photons

● Need for faster and accurate simulations and 
reconstruction  

● Complex hit patterns (DIRC is the most 
complex),  sparse data, response vs 
kinematics   

● DeepRICH: same reconstruction performance 
of best reconstruction algorithm with ~4 
orders of magnitude speed-up in inference 
time on GPU

● Possibility to learn at the event-level rather 
than at the track/particle level, and using real 
data. E.g., two tracks with overlapping 
patterns in the optical box

● Bonus: fast simulation from generative 
models

DIRC at GlueX is instrumental for PID 

DeepRICH

Cherenkov detectors will be the 
backbone of PID at EIC 



Jet Reconstruction 

16

[1] A.M. Sirunyan et al (CMS) Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques, 2020 JINST 15 P06005
[2] M. Aaboud, et al., Performance of top-quark and 𝑊𝑊-boson tagging with ATLAS in Run 2 of the LHC, EPJC 79, 375 (2019)
[3] K. Lee, "Machine learning-based jet and event classification at the EIC with applications to hadron structure and spin physics." JHEP 2023.3 (2023): 1-35
[4] M. Arratia, et al. "Charm jets as a probe for strangeness at the future EIC" Phys. Rev. D 103.7 (2021): 074023.; [5] M. Arratia, Jets at EIC, talk 

● Jet classification in HEP has improved with ML/DL, especially DNN-based models 
in Run 2 at 13 TeV LHC [1,2]. Typical jet momenta range is pT ~100-1000 GeV.

● The EIC, with up to 140 GeV CoM energy, will feature jets in its science program, 
with pT ~10-30 GeV. EIC jets have lower energy and increased sparsity compared 
to LHC. 

● In EIC context, ML/DL already “helps” determine DIS kinematic variables (see 
next) and extract quantum correlation functions. The key question is the 
improvement ML-based algorithms can offer. Due to non-perturbative modeling, 
biases may arise in simulated data for ML training. 

● ML leverages full event information and can train on experimental data for jet 
flavor classification and hard process determination. This has been proposed for 
spin physics and nuclear matter studies [3].

Images taken from [5]

A highly dynamic research area, with an abundance of ML/DL-based activities 

ML4Jets 
https://indico.cern.ch/event/1159913/

https://indico.phy.ornl.gov/event/38/contributions/180/attachments/215/765/EICCaloWorkshop_v2.pdf


Jet Reconstruction 

17[1] K. Lee et al, "ML-based jet and event classification at the EIC with applications to hadron structure and spin physics." JHEP 2023.3 (2023): 1-35

● Strengthening constraints on transverse momentum 
dependent PDFs

○ E.g., charm-tagged jets can increase sensitivity to collinear 
strange quark PDF in charged current events 

○ Di-jet with charm and anti-charm can constrain the gluon TMD

○ New opportunities for gluon helicity distributions, 
parton-in-photon PDF

● Enhancing sensitivity to transverse single spin 
asymmetries (TSSA) (incoming protons have different 
transverse spin) 

● Elucidating cold nuclear matter effects 

ML performance vs 
energy weighted jet charge

particles 
inside jetout of jet 

radiation

IR jet flavor definition  
relevant for 

non-perturbative QCD 
effects 

Use real data for training

Include out-of-jet

Potential impact:



Theory/Experiment Connections
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Fast Sim, 
Data Driven 

“Parameters” 
inference

Event-level 
Signatures

Unfolding

Rapidly connect particle-level predictions 
to detector-level observables

Reco/identification of physics channels “Deconvolution” of detector effects

Extractions preventing overfitting, 
parameters from entire dataset, etc… 

[1] M. LeBlanc, B. Nachman, and C. Sauer. "Going off topics to demix quark and gluon jets in αS extractions." JHEP 02 (2023) 150
[2]  Cao, S., et al. (JETSCAPE) "Determining the jet transport coefficient q ̂ from inclusive hadron suppression measurements using Bayesian 
parameter estimation." Physical Review C 104.2 (2021): 024905.
[3] K. Fraser, and M. D. Schwartz. "Jet charge and machine learning." JHEP 2018.10 (2018): 1-18.

e.g.,



Fast Simulations
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● The ATLAS Collaboration in AtlFast3 (AF3) utilizes 
FastCaloGAN

● Parameterized calorimeter simulation - 500x faster 
than Geant4 in calorimeter

[1] AtlFast3: The Next Generation of Fast Simulation in ATLAS. Comput Softw Big Sci 6, 7 (2022) 
[2] AtlFast3 ICHEP https://cds.cern.ch/record/2815171/files/ATL-SOFT-SLIDE-2022-253.pdf 
[3] C. Kraus and D. Shih, CaloFlow, ArXiv:2106.05285 (2021) 

● Generative models have gotten much 
better, flow models particularly promising 

● AUC = 1 means easily 
distinguishable, AUC = 
0.5 means not 
distinguishable 

● JSD ~ 0 means labels 
are similarly 
distributed; JSD ~ 1 
largest divergence 

Geant4 vs. Simulations

https://cds.cern.ch/record/2815171/files/ATL-SOFT-SLIDE-2022-253.pdf


Data-driven Learning
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[1] C. Fanelli, J. Giroux, and Z. Papandreou. "‘Flux+ Mutability: a conditional generative approach to one-class classification and anomaly detection.

"IOP Mach. learn.: sci. technol. 3.4 (2022): 045012.

cAE + cMAF + HDBSCAN Agnostic to “anomalous” signal, requires one reference sample with high-purity

Generate “reference cluster” (30 dims) conditioned to some 
kinematics variable  (e.g., measured shower energy or jet pT)

Flux+Mutability

(1) γ/n separation in BCAL (OCC); 
(2) BSM/SM Di-jet separation for LHC (AD) – outperformed or on 
par with other methods, but with no assumption on signal 

Data Quality Control / AD

Applied to: 

Extensions:

Relies less on simulations, 
e.g., one-class classification (OCC) / 

anomaly-detection (AD)



Λ-hyperon tagging in CLAS12

21[1] M. McEneaney, A. Vossen, Domain-Adversarial Graph Neural Networks for 𝚲 Hyperon Identification with CLAS12, arXiv:2302.05481v2 (2023)

Domain-Adversarial GNN

Reverse gradient from discriminator loss during backpropagation

Domain-Adversarial GIN

MC before NN MC after NN

Real data
● MC: good accuracy >80%, 0.9 AUC, good signal efficiency with 

background significantly reduced

● Improved S/B on real data by ~30%. Purity improves by factor 1.8.

● Potential improvement from adding detector data as inputs. Similar 
studies can be used for EIC



Deep Inelastic Scattering
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DIS is governed by the four-momentum transfer squared of the exchanged boson Q2, the inelasticity y, and 
the Bjorken scaling variable x. 

These kinematic variables are related via Q2 = s・x y, where s is the square of the center-of-mass energy.

Born diagram

higher-order QED 
corrections at the 

lepton vertex

Initial State Radiation

Final State Radiation

DIS 
Kinematics 



DIS kinematics: Traditional Methods
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● Conservation of momentum and energy 
over constrain the DIS kinematics and leads 
to a freedom to calculate x, Q2, y from 
measured quantities 

● Each method has advantages and 
disadvantages, and no single approach is 
optimal over the entire phase space. Each 
method exhibits different sensitivity to QED 
radiative effects  

● Once (real) higher-order QED effects are 
considered, various methods yield different 
results and the calculated quantities for Q2, 
y and x are not representative for the γ/Z + 
p scattering process at the hadronic vertex.

Summary of basic reconstruction methods

Table taken from Arratia et al., NIM-A 1025 (2022): 166164



Deeply Learning DIS

24M. Diefenthaler, A. Farhat, A. Verbytskyi, Y Xu. "Deeply learning deep inelastic scattering kinematics." EPJ C 82.11 (2022): 1064.

DIS fundamental 
process @EIC

(Born level)

● Use of DNN to reconstruct the kinematic observable x, Q2, y in the study of 
neutral current DIS events at ZEUS and H1 experiments at HERA.

● The performance compared to electron, Jacquet-Blondel and the 
double-angle methods using data-sets independent of training

● Compared to the classical reconstruction methods, the DNN-based 
approach enables significant improvements in the resolution of Q2 and x

DIS beyond the Born approximation has a complicated 
structure which involve QCD and QED corrections

Example in one specific bin 

First application of DL for regression of DIS kinematics 



Input Features
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● Define variables to characterize the strength of QED radiation

*M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “Reconstructing the kinematics of deep inelastic scattering with deep learning", 
NIM-A 1025 (2022): 166164

+ additional 8 features7 features to help indicate QED radiation in the event

Tot. 15 input features 

Benchmark: input features and H1 MC 
dataset of paper NIM-A 1025 (2022): 166164*  



ELUQuant

26[1] C Louizos, M Welling International Conference on Machine Learning; arXiv:1703.01961 Multiplicative Normalizing Flows for Variational Bayesian Neural Networks
[2] A. Kendall and Y. Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." Adv. Neural Inf. Process. 30 (2017).

Learn the Posterior over the weights

Access epistemic (systematic) uncertainty through sampling MNF [1] layers

Access aleatoric (statistical) as a function of regressed output [2]

Learn the regression transformation

Constrain the physics

C. Fanelli, J. Giroux,  “ELUQuant: Event-Level Uncertainty Quantification” arxiv:2310.02913 [cs.LG] 
(NeurIPS 2023 and accepted on Mach. Learn. Sci. Techn., 2024) 



ELUQuant
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C. Fanelli, J. Giroux,  “ELUQuant: Event-Level Uncertainty Quantification” arxiv:2310.02913 [cs.LG] 
(NeurIPS 2023 and accepted on Mach. Learn. Sci. Techn., 2024) 

● Performance similar to DNN 

● Closure test on aleatoric when epistemic is negligible and distribution is gaussian
*M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “NIM-A 1025 (2022): 166164 (DNN)

Each method has 
advantages and 
disadvantages, and no 
single approach is 
optimal over the entire 
phase space. Each 
method exhibits different 
sensitivity to QED 
radiative effects  



Comparison between DNN and BNN
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● (from table before) The RMS (ELUQ) roughly coincide with that of DNN as seen previously 

● The RMS (DNN) for x and y is larger at low y given the distributions are broader  

● The epistemic is systematically smaller than aleatoric component. 

● At large y, for x and y the total uncertainty (epistemic+aleatoric) close to RMS of DNN

— Reporting uncertainty at the level of the event (e.g., RMS from other methods) — 



ELUQuant
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● A “simple” DNN does not have per se 
uncertainty at the event level. In the plots 
we use the RMS from final distributions.  

● Removing events with large relative 
event-level uncertainty (with respect to the 
network prediction) improve the ratio to 
truth and reduce inaccuracy 

● Notice these cuts do not use any 
information at the ground truth level

● We know that ELUQuant is sensitive to 
anomaly detection. Performance studies 
are underway.

DNN and ELUQ  “outperform other 
methods over a wide kinematics range” 
NIM-A 1025 (2022): 166164

The RMS resolution for y and x increase at 
lower y, even for the DNN reconstruction. 
… This results … may be attributed to 
further acceptance, noise, or resolution 
effects that deteriorates the measurement 
of the HFS”



Time performance
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● This is great, but what about compute time? 

Inference specs of ELUQuant

Inference specs of ELUQuant

● In computational terms, ELUQuant at inference showed an impressive rate of 10,000 samples/event 
within a 20 milliseconds on an RTX 3090.

● Can we do faster than this?

○ Several ways. A rapid, streamlined approach is distilling this knowledge in a simpler but faster network 
(we explored a DNN with 450k parameters) called in the following “Fast UQ”, obtaining an effective 
inference time of 7-8us/event using batch ~0.5M events



Unfolding
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Unfolding     Lepton-jet correlation in DIS at H1

● First example of ML-assisted unfolding (MultiFold 
method): enables simultaneous and unbinned 
unfolding in high dimensions. 

● This development will allow us to do unbinned 
cross-section measurements.

[2] V. Andreev et al. (H1 Collaboration), “Measurement of Lepton-Jet 
Correlation in Deep-Inelastic Scattering with the H1 Detector Using 
Machine Learning for Unfolding” Phys. Rev. Lett. 128, 132002

Using ML for differential cross section measurements 
(OmniFold and otherwise).  These tools for recent 

measurements with DIS from HERA data and the same tools 
could be used at the EIC.

OmniFold

[1] A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman, 
and J. Thaler Phys. Rev. Lett. 124, 182001  2020

— unfolding at the histogram level —

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.132002
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.182001


IBU2: Invertible Bayesian 
Unfolding with Uncertainty

32C. Fanelli, J. Giroux, IBU2  “Invertible Bayesian Unfolding with Uncertainty” 

● Learns an invertible mapping between injected and 
reconstructed events (bonus: fast and accurate 
generation of data) 

● Utilizes Bayesian Networks (cf. ELUQuant)

● Allows to unfold a measured event and get posterior 
(with uncertainty)

● Further treated by MCMC 

Preliminary

Benchmark: datasets of OmniFold 
(1911.09107) for jet physics, pp √s=14 TeV, 
Herwig (nature) and Pythia (synthetic) — 
DELPHES for CMS fast sim

— unfolding at the event level — 

gen reco



IBU2

33C. Fanelli, J. Giroux, IBU2  “Invertible Bayesian Unfolding with Uncertainty” 

Preliminary

● IBU2 differently from the 
other methods provide UQ 
calculated at the event level

● IBU2 features an uncertainty 
band



AI/ML in Streaming Readout

34[1] J. Bernauer, C. Dean, C. Fanelli, J. Huang, et al, NIMA 1047 (2023): 167859.

● SRO quickly becoming the new standard readout paradigm for modern NP and HEP experiments.
● A triggerless streaming architecture gives much more flexibility to do physics (max data preservation, 

diverse topologies). Data flow unimpeded in parallel channels, organized in multi-dimensions and time. 
● Manageable event rates at EIC (500 kHz).  

SRO will further the convergence of online and offline analyses, with the possibility of incorporating AI/ML for 
fast reconstruction and calibrations, allowing for a rapid turnaround of physics data and results

Rates quoted are at output of each 
stage



Prototype experiments for next-gen SRO

35[1] F. Ameli, et al., Streaming readout for next generation electron scattering experiments, Eur. Phys. J. Plus, 2022

ML deployed on stream of real data
CLAS + EPSCI @JLab



AI/ML in SRO
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Identify D/B hadrons with real-time ML
● Topology of D/B decays
● Monitor collision vertex
● Feedback for improvement

The challenges:
Very high p+p collision rate: ~3MHz

Low rate of rare signals: ~150Hz (beauty for eg) 

Limited DAQ trigger bandwidth: ~15 kHz 

 (or 0.5% of p+p collisions)

No effective conventional triggers available

FastML: Fast Data Processing and Autonomous Detector Control for sPHENIX and Future EIC Detectors

Courtesy of Ming Liu (LANL)
[1] Huang, Yi, et al. "Efficient Data Compression for 3D Sparse TPC via Bicephalous Convolutional Autoencoder." 2021 20th IEEE (ICMLA). IEEE, 2021.
[2] F. Fahim, et al., “HLS4ML” arXiv:2103.05579 (2021)
[3] C. Dean, Autonomous selection of physics events: A RHIC demonstrator for EIC physics — AI4EIC2023 talk

Intelligent Experiment Through Real-Time AI 
(DOE FOA funded 2022-2023) 

Collaboration of NP, HEP and CS:
LANL, MIT, FNAL, NJIT, ORNL, UNT, CCNU

Talk by J. Huang @ QNP2022 AI/ML for SRO

https://indico.bnl.gov/event/19560/contributions/83354/attachments/51216/87598/ML4HF_C_Dean_20231128.pdf
https://indico.jlab.org/event/344/contributions/10499/attachments/8253/11854/AI%20in%20StreamingDAQ.pdf


Foundation Models
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● Foundation models are AI models trained on broad data sets, allowing for versatility across multiple applications, and have been pivotal 
in transforming AI, particularly in powering advanced chatbots and generative AI applications.

● The first examples of foundation models were pre-trained language models like Google's BERT and the "GPT-n" series of OpenAI's 

● Foundation models have been developed across a range of modalities, see, e.g., DALL-E and Flamingo for images, MusicGen for 
music, RT-2 for robotic control, etc

● Emerging interesting research activities in particle physics (see, e.g., trackingBERT talk at AI4EIC) inspired by these approaches 

See AI4EIC2023, session “Foundation Models and Trends in Data Science”

https://indico.bnl.gov/event/19560/contributions/83301/attachments/51307/87737/AI4EIC%20TrackingBert.pdf
https://indico.bnl.gov/event/19560/timetable/#20231130.detailed


RAG-based summarization AI for EIC
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What is Retrieval Augmented Generation (RAG)?
● Access up to date information without explicitly training of LLM.
● Reduce “Hallucination” of LLM. 
● Grounding LLM to truth to increase reliability by providing citations.

External 
Knowledge

Why need RAG for Large Scale Physics Experiments?
● EIC large scale experiment (e.g., EICUG 1,400 users, ePIC 170+ institutions) 
● Regular updates to documents, Run Wiki
● Newbies may take months to get to know the full experimental details.
● Tot document size approximately proportional to scale of experiment

“Ingestion” of data 
● Creation of the vectorized knowledge base.
● Every node below influence RAG performance
● 200 recent arXiv papers on EIC (since 2021)

“Frozen” 
LLM

“Inference”
● Given a prompt compute similarity index to most similar 

vectors in VectorDB
● Use LLM to further narrow down and summarize the finding

https://indico.bnl.gov/event/19560/contributions/82240/attachments/51190/87738/A%20Summarization%20Agent%20for%20EIC-1.pdf
https://www.eicug.org/content/map.html


RAG-based summarization AI for EIC
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Methods to evaluate RAG’s performance
● RAGAS score
● LLM as Judge[1]

Methods to improve RAG architecture
● Better chunking strategies. LateX Splitter, TWikiSplitter
● Metadata based filtering.
● Response Template fine-tuning. INSTRUCT tuning
● Model fine-tuning. Computationally costly. For more details, see K. Suresh’s presentation at AI4EIC 

https://indico.bnl.gov/event/19560/contributions/82240
/

Demo (for this presentation): https://06b8-128-239-17-254.ngrok-free.app/

https://indico.bnl.gov/event/19560/contributions/82240/attachments/51190/87738/A%20Summarization%20Agent%20for%20EIC-1.pdf
https://docs.ragas.io/en/latest/concepts/metrics/index.html
https://arxiv.org/pdf/2311.09476.pdf
https://indico.bnl.gov/event/19560/contributions/82240/
https://indico.bnl.gov/event/19560/contributions/82240/
https://06b8-128-239-17-254.ngrok-free.app/


Conclusions
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● AI/ML can be integrated into virtually every facet of the data processing pipelines of NP experiments

● Next generation QCD experiments like EIC are being designed during the AI revolution, and can take 
advantage of AI/ML since the design and R&D phase. The EIC detector(s) may the first large-scale 
detectors optimized with machine learning.  

● Hadronic physics will increasingly benefit from ML; when it comes to study non-perturbative effects, ML 
allows a “holistic” approach (full event information) and can be trained on real data   

● Next generation QCD experiments will take full advantage of SRO and AI using heterogeneous computing: 

○ Near real-time analysis / control (e.g., intelligent / autonomous detectors). A common theme is 
applying AI-methods with well-understood UQ (both systematic and statistic). 

○ If we understand the uncertainties and biases, near real-time analysis with SRO can result in a 
paradigm shift for next generation QCD experiments, with faster turnaround time to produce scientific 
results. 

● Foundation models have emerged as some of the most powerful instruments available today, yet their 
potential has not been fully explored in our field. 



Backup
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[1]R. A.  Khalek, et al. "Science requirements and detector concepts for the electron-ion 
collider: EIC yellow report." NIMA 1026 (2022): 122447.

[2] HERA Coll. , JHEP 1001:109(2010)

EIC Science Landscape

Without gluons there would be no 
nucleons, no atomic nuclei, …   

EIC detector



Electron Identification 

43[1] J. Collado, J. N. Howard, T. Faucett, T. Tong, P. Baldi, and D. Whiteson Phys. Rev. D 103, 116028 – (2021), talk at AI4EIC (2022)

“Learning to identify electrons”
 Aim is to identify new high-level features that 
bridge the gap between existing performance and 
superior performance of CNN 

Search done through energy flow polynomials (EFP)

~Les Houches Angularity ~pT
D

Performance of deep networks like CNN reveal there is information in low-level 
image that is not captured by the suite of high-level features built by physicists 

https://indico.bnl.gov/event/16586/contributions/68782/attachments/43775/73801/ML_leptons_oct2022.pdf


ELUQuant: Physics-informed term
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● The plots report the true inaccuracy, and the weighted epistemic uncertainty, which is 
larger the larger the true inaccuracy is 

● The physics-informed term (blue) contributes to decrease the true inaccuracy.  

physics-informed



ELUQuant: Towards near real-time
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ELUQuant: Towards near real-time
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Q2(pred)/Q2(true) vs y x(pred)/x(true) vs y y(pred)/y(true) vs y

ELUQuant/Fast UQ: Very similar 
performance at the event level, 
predictions on kinematics and 

epistemic + aleatoric uncertainties 
within ~5% on average



Towards “autonomous” experiments
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[1] T. Britton, D. Lawrence, K. Rajput, arXiv:2105.07948v1 [cs.CY]
[2] T. Jeske, et al. "AI for Experimental Controls at Jefferson Lab." JINST 17.03 (2022): C03043. — AI4EIC proceedings 
[3] T. Britton, B. Nachman. "Accelerator and detector control for the EIC with machine learning." JINST 17.02 (2022): C02022. — AI4EIC proceedings

● Near real-time monitoring tasks for GlueX in Hall D 

● It was the online monitoring coordinator’s job to sift through hundreds of images produced in the previous 
24 hours, looking for missed anomalies. This “human-in-the-loop” method was prone to errors.   

● Hydra was created to tackle these challenges. Hydra is an AI system that leverages Google’s Inception v3 
for image classification. It has been shown to perform better than humans at diagnosing problems.

See D. Lawrence’s talk 
at APS23 for details and 

other examples

https://meetings.aps.org/Meeting/APR23/Session/C15


MOBO: Scaling
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● W&B dashboard for monitoring  

○ MOBO stress-testing for 
problems with increasing 
complexity (design and 
objectives) and known Pareto

● Multiple metrics

○ Accuracy of optimization

○ Convergence properties 

○ Compute resources 

https://wandb.ai/phys-meets-ml/AID2E-Closure-1?workspace=user-karthik18495

https://wandb.ai/phys-meets-ml/AID2E-Closure-1?workspace=user-karthik18495
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Candidates for Optimization in ePIC
Considering all the constraints as ePIC is in the process of finalizing engineering 
designs, we can select those sub-detectors that still have tunable parameters 

dual-RICH

● Mirror, sensor 
placement, gas, 
mirror material (lower 
costs material)...  

● PID performance, 
costs, …

Far-Forward
Ongoing discussion with working groups to identify potential 

● B0 magnetic field map, distance between space 
(always considered even), central location of tracker
 

● Momentum resolution, acceptance  

 E. Cisbani et al 2020 JINST 15 P05009



Documentation and Outreach 
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● GitBook and/or other knowledge sharing platforms will be part of the initiatives 
related to documentation and outreach  

● Offering opportunities for experiential learning with easy access for beginners

http://cfteach.github.io/nnpss

https://cfteach.github.io/HUGS23

http://cfteach.github.io/nnpss
https://cfteach.github.io/HUGS23


Assisted design of future QCD Experiments
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[1] C. Fanelli, Z. papandreou, K. Suresh, et al. AI-assisted optimization of the ECCE tracking system at the Electron Ion Collider, NIMA 1047, 167748 (2023)
[2] A. G. Baydin et al. Nuclear Physics News 31.1 : 25-28 (2021).
[3] C. Fanelli, Design of detectors at the electron ion collider with artificial intelligence, 2022 JINST 17 C04038 (2022) 
[4] F. Torales Acosta et al., “ML for Detector Optimization and Simulation”, talk at AI4EIC2023 [link]

Designing detectors is a multi-objective optimization problem!
(detector response, physics gains, costs)

https://ai4eicdetopt.pythonanywhere.com/ 
Take full 

advantage of AI 
to learn the 
Pareto front 

Design space: 
Multidimensional

+
Multiple 

Objectives!

This is a problem where 
with AI-assistance we can 

outperform more 
conventional strategies 

Differentiable surrogate model + gradient-based optimization 

MODE is targeting the use of differentiable programming in design 
optimization of detectors for particle physics applications

End-to-end optimization pipelines with surrogate models ML  
require modeling of simulations, and collect reference data to train 
the implementations.

Conceptual layout of an optimization pipeline for a muon 
radiography apparatus.

https://indico.bnl.gov/event/19560/contributions/82241/attachments/51233/87626/AI4EIC%20Codesign%20Slides.pdf
https://ai4eicdetopt.pythonanywhere.com/

