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|Taxonomy o

INTELLIGENCE

RL: Learning through trial
and error, optimizing
actions based on rewards

Al: The field of computer science that focuses on creating machines
or software capable of intelligent behavior, emulating human
cognitive functions such as learning, reasoning, problem-solving, and
perception.

DL: A subset of ML that
focuses on artificial neural
networks with many layers

ML: A subset of Al that enables computers to learn
from data without explicit programming MACHINE
LEARNING

e Epistemic Uncertainty: This type of
- uncertainty arises from a lack of knowledge
U n C e r t a 1 n t X which is reflected in the effectiveness of the
model in describing the data. It can be
reduced as more information or data becomes

available, and by improving the model. It can
be affected by inaccuracy.

Aleatoric

e Aleatoric Uncertainty: This uncertainty is due
to inherent variability or randomness in a
process or system and cannot be reduced by
collecting more data. For example, even if we
know the probability of getting heads when
ﬂ' . f " . h f h Abdar, Moloud, et al. "A review of uncertainty quantification in deep
. Ipplng a a_lr 90"1_! the 0utcc_>me Or eaci learning: Techniques, applications and challenges." Information
individual flip is still uncertain. fusion 76 (2021): 243-297.




I_ain References for AI/ML in HE(N)P _l

Several workshops identified the scientific challenges and opportunities at . .
the intersection between Al and high energy nuclear physics research https.lIdOI.orgl1 0.11 03/RevModPhys.94.031 003

htt S'//eiC ai . ] ) A. Boehnlein, M. Diefenthaler, C. Fanelli et al., Machine learning in nuclear
ps: - Arxiv:2307.08593 (accepted on Comp. Softw. Big Sci.) physics, Rev. Mod. Phys. 94, 031003 (2022) and references therein
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In October
ficial Inte or the Elec

The Electron-lon Collider (EIC), a state-of-the-art facility for studying the strong force, is 3 docunen NUCLEAR EXPERIMENT
expected to begin commissioning its first experiments in 2028. This is an opportune time for k ~ i e ) * Methods

artificial intelligence (A to be included from the start at this facility and in all phases that lead s da o * Tools.

up to the experiments. The second annual workshop organized by the AI4EIC working group,

which recently took place, centered on exploring all current and prospective application areas of b 2 Fig. %) » vl BEAE ACCELERATOR SCIENCE
Al for the EIC. This workshop is not only beneficial for the EIC, but also provides valuable insights A h §| = AND OPERATIONS

for the newly established ePIC collaboration at EIC. This paper summarizes the different activities v tial work

and R&D projects covered across the sessions of the workshop and provides an overview of the

goals, approaches and strategies regarding Al/ML in the EIC community, as well as cutting-edge

techniques currently studied in other experiments.

https:/[iml-wg.github.io/HEPML-LivingReview/

HEPML-LivingReview

AI/ML for ePIC and Beyond (Nov 28, morning)
« Derek Anderson (lowa State University), Anselm Vossen (Duke University)

Calibration, Monitoring, and Experimental Control in Streaming Environments (Nov 28, afternoon)
« Yeonju Go (Brookhaven National Lab), Torri Jeske (Jefferson Lab)

AIML for Accelerators (Nov 29, moming) A Living Review of Machine Learning for Particle Physics

* Kevin Brown (Brookhaven National Lab), Elena For (CERN)
AI/ML for Data Analysis and Theory (Nov 29, afternoon) Modern machine learning techniques, including deep learning, is rapidly being applied, adapted, and developed for high energy
+ Brandon Kriesten (Argonne National Laboratory), Vinicius Mikuni (National Energy Research Scientific Computing physics. The goal of this document is to provide a nearly comprehensive list of citations for those developing and applying these

Center) approaches to experimental, phenomenological, or theoretical analyses. As a living document, it will be updated as often as possible

Foundation Models and Trends in Data Science (Nov 30, morning)

to incorporate the latest developments. A list of proper (unchanging) reviews can be found within. Papers are grouped into a small set
of topics to be as useful as possible. Suggestions are most welcome.

download re

« Yaohang Li (Old Dominion University), Daniel Murnane (Lawrence Berkeley National Laboratory)

AI/ML in Production, Distributed ML (Nov 30, afternoon)

« David Lawrence (Jefferson Lab), Rui Zhang (UW Madison)

https://indico.bnl.gov/event/19560/ Key discussion points: need for more benchmarks, uncertainty quantification



https://arxiv.org/abs/2307.08593
https://indico.bnl.gov/event/19560/

|_Disclaimer _l

e ML/DL is ubiquitous in NP and HEP

e Hard to impossible to summarize multiple topics, and recent works, activities (e.g., recent AI4EIC workshop showed
an impressive progress in the last year) and opportunities.

e This is an high-level and incomplete overview of Al/ML applications in NP. Drawing from insights gained at the
recent AI4EIC at CUA, this talk is approached from an EIC and JLab (experimental) perspective. | will also make
some examples from LHC and present studies that use benchmark datasets from the LHC community.

e AtAI4EIC, two cross-cutting needs have been identified:
(i) Establishing Benchmarks and (ii) Uncertainty Quantification

The following examples have been chosen to emphasize and explore these key topics and opportunities:
e Adaptive Experimentation / Al-assisted Optimizations
e  “Holistic” analysis — full event information, and real-data
e Uncertainty Quantification (event-level) and Unfolding with Uncertainty

e Towards near real-time applications (supported by Streaming Readout)




|_AI—Assisted Detector Design _l

Benefits from rapid turnaround time
1_ from simulations to analysis of
‘ high-level reconstructed observables

e The EIC SW stack offers multiple
Design Parameters Objectives features that facilitate Al-assisted
l design (e.g., modularity of simulation,

reconstruction, analysis, easy access
Detector
Simulation
Accurate simulations of the passage of particles or

to design parameters, automated
radiation through matter

Reconstructed checks, etc.)

Features e Leverages heterogeneous computing

A complex problem with (i) multiple design parameters, driven by (ii) multiple objectives

Provide a framework for an holistic optimization of the sub-detector system
(e.g., detector response, physics-driven, costs) subject to (iii) constraints
5 I

@ Those at EIC can be the first large-scale experiments ever realized with the assistance of Al



rKi—Assisted Detector Design
(at EIC)

dies

VUbU SURROGATE CEsion
MODEL CANDIDATE
SELECTION

bjectives

DATASET

design parameters | Multi-Objective

objectives Bayesian Optimization

acquisition

PARETO FRONT d
UPDATE OBJECTIVES AT
ontainerised software
\

DESIGN CANDIDATE
Data flow via Rucio

ontrol/info flow via PanDA/IDI

(i) Will contribute to advance state of the

art MOBO complexity to accommodate a (ii) Will leverage cutting-edge workload

large number of objectives and will explore (i) Development of suite of data science tools management systems capable of
usage of physics-inspired approaches for interactive navigation of Pareto front operating at massive data and handle
(multi-dim design with multiple objectives) complex workflows

Examining solutions on the Pareto front of EIC detectors at different values of the budget can have great cost benefits

A fractional improvement in the objectives translates to a more efficient use of beam time which will
make up a majority of the cost of the EIC over its lifetime 6



https://ai4eicdetopt.pythonanywhere.com/
https://wandb.ai/phys-meets-ml/AID2E-Closure-1?workspace=user-karthik18495
https://wandb.ai/phys-meets-ml/AID2E-Closure-1?workspace=user-karthik18495

rﬁéconstruction/Identification

Rev. Mod. Phys. 94, 031003 (2022)

Tor aetector systems
e with theory

Tracking Calorimeter

PID-detector Jet Reco

See backup slides

[1.G. Gavalian, et al. "Using Atrtificial Intelligence for Particle Track Identification in CLAS12 Detector." arXiv preprint arXiv:2008.12860 (2020).

[2] G+ Gavalian. "Auto-encoders for Track Reconstruction in Drift Chambers for CLAS12." arXiv preprint arXiv:2009.05144(2020).

[3] L.-G. Gagnon, Machine learning for track reconstruction at the LHC, 2022 JINST 17 C02026 — AI4EIC workshop

[4] Exa.TrkX: HEP tracking at the exascale. A DOE CompHEP project, https://exatrkx.github.io/

[5] A. Akram, and X. Ju. "Track Reconstruction using Geometric Deep Learning in the Straw Tube Tracker (STT) at the PANDA Experiment." arXiv:2208.12178 (2022)

[6] D. Rohr "Overview of online and offline reconstruction in ALICE for LHC Run 3." arXiv:2009.07515 (2020) https://arxiv.org/abs/2009.07515 7




|_Tracking

The CLAS spectrometer investigates nucleon and meson structures using a solenoid-torus magnetic field for
wide acceptance, precise tracking, and efficient charged particle separation with background suppression.

Tracking in NP experiments poses unique challenges:

(1) Compared to HEP, low track multiplicities and large curvatures

(lower P and relatively large, non-uniform magnetic fields)

(2) Typically represents the most substantial CPU resource usage*

Each sector has 3 regions
Each region has 2 Super-Layers
Super-Layer has 6 layers
Each Layer has 112 wires
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Tracking

Beam Current (nA)

6I-assisted tracking in CLAS12/JLab:
e  Track classification
e Missing segment generation
e Denoising drift chamber data

Qandidates from raw information from DC and ECAL

They also implement a Level 3 trigger for identifying electron

4

[1] G. Gavalian, et al. "Using Atrtificial Intelligence for Particle Track Identification in CLAS12 Detector." arXiv preprint arXiv:2008.12860 (2020).
[2] G. Gavalian. "Auto-encoders for Track Reconstruction in Drift Chambers for CLAS12." arXiv preprint arXiv:2009.05144(2020).

8




experiment independent ML-based tracking in HEP
| Tracking P P °

Accelerated GNN tracking (IRIS-HEP)

Use Graph Neutral Network (GNN) to
Metric CrEpH R : Connected >y reconstruct tracks

Learning Network ‘ . 2 - Components (S , W 7
s 0 o e or . - Embedding : Use all the hits in the
Module 9 g N Comcind \ detector to build a graph
@] ® Components oy
Map

+ Walkth h . . . .
e Filtering : Neural-Network predicts if
Edge Scores Track Candidates
Graph Edge Graph nodes should be connected (can also
Construction Labeling Segmentation use a connection map)

ACTS: a common tracking software

Features: (i) Tracking geometry description, (ii) simple event data model, (iii) most track reconstruction
algorithms, (iv) example framework with python bindings, (v) performance evaluation algorithms

Provides a testing environment for new tracking algorithms, open detector data
(based on the TrackML challenge)

Towards end-to-end pipelines for tracking.
Kalman Filter remains a powerful tool to completely “throw" away... GPU-accelerated KF

[1] L.-G. Gagnon, Machine learning for track reconstruction at the LHC, 2022 JINST 17 C02026 — AI4EIC workshop

[2] Exa.TrkX: HEP tracking at the exascale. A DOE CompHEP project,

[3] A. Akram, and X. Ju. "Track Reconstruction using Geometric Deep Learning in the Straw Tube Tracker (STT) at the PANDA Experiment." arXiv:2208.12178 (2022)
[4] D. Rohr "Overview of online and offline reconstruction in ALICE for LHC Run 3." arXiv:2009.07515 (2020) 9



https://exatrkx.github.io/
https://arxiv.org/abs/2009.07515
https://github.com/acts-project/acts

rﬁéutral showers

GlueX explores the nature of confinement by studying
exotic hybrid mesons

Calorimeter

Separation of electromagnetic and hadronic interactions (i.e., low energy vs split-offs) in the GlueX FCAL (2800 PbWO4 modules)

Trained on w—Tt* (YY) (true photons and charged particles interacting with FCAL)

Showers
matchedto
charged
particles

Photon
candidate
showers

Showers classified as:

Type 0 (true photon showers from hadron
decays, e.g., 1)

Type 1 (from charged particles colliding
with FCAL)

Type 2 (all other types of showers, e.g.,
split-offs of a Type 1 or background noise)

Goal: distinguish Type 0 from Type 2
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|

0.1 02 03 04 05 06 07 08 0.9 1
Signal efficiency

] shape asymmetry

MLP selected due to ease of implementation within GlueX SW framework

Thorough data/MC comparison (agreement within statistical precision) —
Bkgd reduction of 60% and signal retention of 85% on inclusive m° data.

[1] R. Barsotti and M.R. Shepherd 2020 JINST 15 P05021 10



rghower Imaging —

shower examples

Imaging Calorimeter

Electron Shower Sample Pion Shower Sample

PbWQ, sim.

Pb/Sc meas.
y (PHENIX)
W/ScFi sim. //
(sPHENIX)
£e=295%
10.0
p (GeV/c)
ML model: Sequential CNN + MLP : imaging detector and ML
, green and the : other technology

and traditional cut-based strategy

Hybrid Concept

ML with shower imaging significantly improves e/ rejection compared to

Monolithic Silicon Sensors AstroPix traditional E/p cut — impact on DIS

Scintillating fibers embedded in Pb (Pb/ScFi similar to

GlueX Barrel Ecal)

“Sandwiched” 6 layers of AstroPix and 5 layers of Pb/ScFi . .. R . .

(~1X0) followed b;a large chunk of Pb/chi Tagging final state rgd|ot|ve Y's from nuclear/nucleon elastic scattering at low x
. to benchmark QED internal corrections

Total thickness ~43 cm (~21 X0)

L o PID of low energy p that curl in the barrel ECal — J/y reconstruction and TCS
arge amount of data (3D shower imaging)
Improving PID, providing a space coordinate for DIRC reconstruction

Separation of y's from T® at high momenta (40 GeV/c) and precise position
reconstruction of y's (<1 mm at 5 GeV) — DVCS and y physics

[1] N. Apadula, et al. "Monolithic active pixel sensors on cmos technologies." arXiv preprint arXiv:2203.07626 (2022).
[2] C. Peng, , AI4EIC 2" workshop (2022) 11



https://indico.bnl.gov/event/16586/contributions/68785/attachments/43773/73846/AI4EIC_Chao.pdf

rﬁyv GlueX/BCAL + Large lLanguage Model =~

BCAL is constructed as a lead and scintillating-fiber calorimeter Shower Features
and read out with 3840 large-area silicon photomultiplier arrays

Rad\us nl z;ym E(2" Layer) E(3" Ldyef) E(4" La»erl

4 °
65 cm 20 ~

)11
1

= beamline

ﬁ rﬁ\ P \ Jt L%ﬂ

ZWidth R \“.’Jdt! Twidth ﬂ Wi dlh ] Wrd!h

BCAL top half cutaway
B)

o ° Large Language Model prompt-engineering: write the whole code with ChatGPT

Creating a Session and Setting the Context Pushing Code to AWS

Welcome to AI4EIC Hackathon 2023

- 4
22.46 cm L»:‘__‘:lw
Ll L

<-8.51 cm

©  How can | help you?

{

Hi Fi L 1 Bfrom Team @ A Write a Hello World program in Python.

Start a Chat Session

@ Certainly! Here's a simple "Hello, World!" program in Python:

single module
BCAL end view end

©) (D)

("Hello, World!")

web-interface

Please slow down...

Push to AWS instance

(A) BCAL schematic; (B) a BCAL module side view; (C) end view of the BCAL showing all

48 modules and (D) an end view of a single module showing readout segmentation in four hd Part|C|pants had (baS|CaIIY) no access to the fI|eS, nor to the code editor
rings (inner to outer) and 16 summed readout zones demarcated by colors

) ChatGPT-based solutions significantly outperformed (human-based)
expected solutions! Beginner-level were able to submit excellent solutions

[1] J. Giroux, P. Moran, K. Suresh, C. Fanelli: Tutorial on 2nd AI4EIC hackathon, 2023 [ ] 1 2


https://indico.bnl.gov/event/19560/contributions/83337/attachments/51332/87782/2023%20Hackathon%20Tutorial.pdf

rﬁyv GlueX/BCAL + large Language Model

main app
chatGPT
login
logout

submit

¢ AI4EIC Hackathon 2023

Welcome to the AI4EIC Hackathon 2023. Navigate to the different pages of the

hackathon.

Team#

o

Team2

@

Team2

4 Team2

10 Team3

©

Team3

®

Team3

~

Team3

@

Team4

Team4

Team4

3

Team5

&

Teams

14 Team5

w

Teaml

~

Teaml

Teaml

Team Name
Jets3

Jets3

Jets3

SPIN 2023 Local Organization Committee
SPIN 2023 Local Organization Committee
SPIN 2023 Local Organization Committee
SPIN 2023 Local Organization Committee
Small Language Models

Small Language Models

Small Language Models

404 Brain Not Found

404 Brain Not Found

404 Brain Not Found

Messed Ups.

Messed Ups

Messed Ups

Username
hcharles
aderek
kdmitrii
ssimon
mmatthew
mgregory
peonnor
smanuel
tfernando
mvinicius
salex
gsimon
proberto
himran
savinsh

sbhavya

Name of User
Charles Hughes
Derek Anderson
Dmitii Kalinkin
Simon Schneider
Matthew McEneany
Gregory Matousek
Connor Pecar
Manuel Szewc
Fernando Torales
Vinicius Mikuni
Alex Smith

Simon Gardner
Roberto Preghenella
Md. Imran Hossain
Avnish Singh

Bhavya Singhal

Q1 Score
99.935
99.935
99.935

99.9325
99.9325
99.9325
99.9325
99.9285
99.9285
99.9285
99919
99919
99919
99918
99918

99.918

Q2 Score
99.777
99.777
99.777

99.7735
99.7735
99.7735
99.7735
99.77
99.77
99.77
99.7565
99.7565
99.7565
99.614
99.614

99.614

Deploy

+ Total Score
199.712
199.712
199.712
199.706
199.706
199.706
pLEN(
199.6985
199.6985
199.6985
199.6755
199.6755
199.6755

199.532

199.532

199.532

What happens when we combine

Calorimeter

physicists to LLM “assistance”:

Great results: high
performance (well beyond

expectations, particularly for

problem 2 with increased
complexity)

Several winners within

statistical uncertainties using

different approaches

Absolute winner selected by
minimum number of prompts

and time of submission

What's next: analysis of these

data/solutions

[1] J. Giroux, P. Moran, K. Suresh, C. Fanelli: Tutorial on 2nd AI4EIC hackathon, 2023 [indico link]
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https://indico.bnl.gov/event/19560/contributions/83337/attachments/51332/87782/2023%20Hackathon%20Tutorial.pdf

| PID with Cherenkov — ssmsmsssd le

DIRC at GlueX is instrumental for PID

PID-detector

SR R b

a i T T e
e LT LR
Sl L

supporting bracket
'S

BTy g _E Ir Ll _1
s charged track Rk Tk _h =T " F:i
ox, by, 6z
‘;yn!,m : = ,‘ | | - T EE—— H ] . aon ‘, 0 ;m[, ,“i]' 0.0)
‘ % Photon Yield vs Track Angle Fixed Kinematics S niioia a00ta. ool
By 3 ‘ ;1‘
! / \Fﬂﬁ (P<[0,5] GeV/c) v ,; :
l wn» B
by BaBar E :
-— bar box f
E_4

Cherenkov photons

@‘0\

[1] C. Fanelli, J. Pomponi, “DeepRICH: learning deeply Cherenkov detectors”, Mach. Learn.: Sci. Technol., 1.1 (2020): 015010
[2] C. Fanelli, "Machine learning for imaging Cherenkov detectors." JINST 15.02 (2020): C02012. L 4




Cherenkov detectors will be the

I_PID with Cherenkov — &swassasd

DIRC at GlueX is instrumental for PID

supporting bracket
AN 4

/
B

steel box

SR8 &

:BaBar
bar box

charged track

Need for faster and accurate simulations and
reconstruction

Complex hit patterns (DIRC is the most
complex), sparse data, response vs
kinematics

DeepRICH: same reconstruction performance
of best reconstruction algorithm with ~4
orders of magnitude speed-up in inference
time on GPU

Possibility to learn at the event-level rather
than at the track/particle level, and using real
data. E.g., two tracks with overlapping
patterns in the optical box

Bonus: fast simulation from generative
models

PID-detector

C. Fanelli, and J. Pomponi.

Machine Learning: Science and
Technology 1.1 (2020): 015010.

injected .
heR’
T I I )

‘;,
‘P‘G(ﬁx Y

&

VAE
Encoder |

1atent space

CNN/MLP
Classifier

Classification
Output

reconstructed

[1] C. Fanelli, J. Pomponi, “DeepRICH: learning deeply Cherenkov detectors”, Mach. Learn.: Sci. Technol., 1.1 (2020): 015010
[2] C. Fanelli, "Machine learning for imaging Cherenkov detectors." JINST 15.02 (2020): C02012.

15



I J e t R econs t ruc t 1 on Ir\lntlt_;;j:(:I:Itis:ldico.cern.chleventl1159913/

A highly dynamic research areq, with an abundance of ML/DL-based activities

e Jet classification in HEP has improved with ML/DL, especially DNN-based models
in Run 2 at 13 TeV LHC [1,2]. Typical jet momenta range is p, ~100-1000 GeV.

e The EIC, with up to 140 GeV CoM energy, will feature jets in its science program,
with p; ~10-30 GeV. EIC jets have lower energy and increased sparsity compared
to LHC.

e In EIC context, ML/DL already “helps” determine DIS kinematic variables (see
next) and extract quantum correlation functions. The key question is the
improvement ML-based algorithms can offer. Due to non-perturbative modeling,
biases may arise in simulated data for ML training. -—

e ML leverages full event information and can train on experimental data for jet
flavor classification and hard process determination. This has been proposed for
spin physics and nuclear matter studies [3].

Images taken from [5]

[11A.M. Sirunyan et al (CMS) Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques, 2020 JINST 15 P06005

[2] M. Aaboud, et al., Performance of top-quark and WW-boson tagging with ATLAS in Run 2 of the LHC, EPJC 79, 375 (2019)

[3] K. Lee, "Machine learning-based jet and event classification at the EIC with applications to hadron structure and spin physics." JHEP 2023.3 (2023): 1-35 1 6
[4] M. Arratia, et al. "Charm jets as a probe for strangeness at the future EIC" Phys. Rev. D 103.7 (2021): 074023.; [5] M. Arratia, Jets at EIC, talk



https://indico.phy.ornl.gov/event/38/contributions/180/attachments/215/765/EICCaloWorkshop_v2.pdf

rjét Reconstruction

Jet Reco

Potential impact:

IR jet flavor definition

relevant for e Strengthening constraints on transverse momentum
non-perturbative QCD dependent PDFs
effects

U L data for traini o E.g., charm-tagged jets can increase sensitivity to collinear
porticles seéreat catafortraining strange quark PDF in charged current events
out of jet inside jet

radiation jet o  Di-jet with charm and anti-charm can constrain the gluon TMD

o New opportunities for gluon helicity distributions,
parton-in-photon PDF

ML performance vs
energy weighted jet charge Include out-of-jet ) e . .
e Enhancing sensitivity to transverse single spin

asymmetries (TSSA) (incoming protons have different
transverse spin)

u,d,s vs. c jets uvs. d jets

°

Truec
Total ¢
Trued
Totald
o

: : A doT — dot

2o z ur —

: 2 doT + dot
T o | - e Elucidating cold nuclear matter effects

False Positive Rate =

—_— e _ Falsed
Totalu, d, s False Positive Rate = 2=

[1]1 K. Lee et al, "ML-based jet and event classification at the EIC with applications to hadron structure and spin physics." JHEP 2023.3 (2023): 1-35 1 7




r?heory/Experiment Connections

) “ n
Fast Sim, Paraometers™ |
Data Driven inference

Rapidly connect particle-level predictions Extractions preventing overfitting,
to detector-level observables parameters from entire dataset, etc...

Event-level Unfolding
Signatures

Reco/identification of physics channels

“Deconvolution” of detector effects

e.g.,

@

S

[1] M. LeBlanc, B. Nachman, and C. Sauer. "Going off topics to demix quark and gluon jets in ag extractions.” JHEP 02 (2023) 150

[2] Cao, S., et al. (JETSCAPE) "Determining the jet transport coefficient q”from inclusive hadron suppression measurements using Bayesian
parameter estimation." Physical Review C 104.2 (2021): 024905.

[3] K. Fraser, and M. D. Schwartz. "Jet charge and machine learning." JHEP 2018.10 (2018): 1-18.



rEést Simulations =

e The ATLAS Collaboration in AtIFast3 (AF3) utilizes e (Generative models have gotten much
FastCaloGAN better, flow models particularly promising

e Parameterized calorimeter simulation - 500x faster
than Geant4 in calorimeter

104 0.5 1.0 1.5 2.0 0.0 0.8

0.2 0.4 .6 X
Shower Depth Width o,

102 X
Depth-weighted total energy /4 Shower Depth s4

nt GEANT nt CaloGAN nt CaloFlow

Geant4 vs. Simulations

Mo AUC / JSD DRN e  AUC = 1 means easily
Puncc:ihthm:gh vs. CALOGAN vs. CALOFLOW distinguishable, AUC =
+Geant .
unnormalized | 1.000(0) / 0.993(1) | 0.8 0.5 means not
I distinguishable

normalized 1.000(0) / 0.997(0)

unnormalized | 1.000(0) / 0.996(1) | 0.660(6) / 0.067(4) ° JSD ~ 0 means Iabels
normalized | 1.000(0) / 0.994(1) | 0.794(4) / 0.213(7) are similarly
unnormalized | 1.000(0 0.988(1 0.632(2 0.048(1 dlStrIbUted, JSD ~1
largest divergence

normalized | 1.000(0) / 0.997(0) | 0.751(4) / 0.148(4)

[1] AtIFast3: The Next Generation of Fast Simulation in ATLAS. Comput Softw Big Sci 6, 7 (2022)
[2] AtIFast3 ICHEP 1 9
[3] C. Kraus and D. Shih, CaloFlow, ArXiv:2106.05285 (2021)



https://cds.cern.ch/record/2815171/files/ATL-SOFT-SLIDE-2022-253.pdf

Relies less on simulations, Fost

I D a t a B d r 1 V e n L e a r n 1 n g e.9., ogi—gingy?ldoestseiggggo(Xé)OCC)/ Q

Flux+Mutability CAE + cMAF + HDBSCAN Agnostic to “anomalous” signal, requires one reference sample with high-purity

- Generate “reference cluster” (30 dims) conditioned to some
b Ak : j kinematics variable (e.g., measured shower energy or jet p.)

Features Xi€ Kinematics Ki Training Data Latent Vectors G €
ki ki ko |

me Original = Reconstructed m— Generated

KDE Functional

Reconstructed Features X' Residuals R €
X1 z(:}(; 4 ninin| . N

Augmented Space
—a (X)e—

\ (2 (Zs e

e
t cMAF

N Forward Pass
¥
‘Augmented’ Object
Outlier Score % Reconstructed x". Residuals x - x'

Reference Cluster

195% Quantile
|

Reference Class Unknown Class

Outlier Score

Hierarchical Concatenation

clustering @ auantie Cut Applied to: (1) y/n separation in BCAL (OCC);
(2) BSM/SM Di-jet separation for LHC (AD) — outperformed or on
par with other methods, but with no assumption on signal

Extensions: Data Quality Control / AD

[1]1 C. Fanelli, J. Giroux, and Z. Papandreou. "‘Flux+ Mutability: a conditional generative approach to one-class classification and anomaly detection.
"IOP Mach. learn.: sci. technol. 3.4 (2022): 045012. 2@




A-hyperon tagging in CLAS12

Domain-Adversarial GNN

aL¢

dax

Class 1
- B =

Crystal Ball Fit

el [~
Signal Fit Info:
31

53 + 0.0428
0 +11.76

- EE =

£ Gradient reversal R
] dLp

ox

Hidden repiesentation M C befO re N N

Reverse gradient from discriminator loss during backpropagation

e MC: good accuracy >80%, 0.9 AUC, good signal efficiency with
background significantly reduced

e Improved S/B on real data by ~30%. Purity improves by factor 1.8.

e Potential improvement from adding detector data as inputs. Similar
studies can be used for EIC

Event-level
Signatures

Domain-Adversarial GIN

MC after NN

Separated mass distribution

Real data

e foon
e T i

114 116 118
Invariant mass (GeV)

[1] M. McEneaney, A. Vossen, Domain-Adversarial Graph Neural Networks for A Hyperon Identification with CLAS12, arXiv:2302.05481v2 (2023)

VA



rﬁéep Inelastic Scattering T=

DIS is governed by the four-momentum transfer squared of the exchanged boson Q?, the inelasticity y, and
the Bjorken scaling variable x.

higher-order QED Initi
corrections at the
lepton vertex

| State Radiation

kJ

Final State Radiation

HES

Born diagram

These kinematic variables are related via Q? = s*x y, where s is the square of the center-of-mass energy.

q-P DIS

s=(k+P), Q'=-¢", y=.—%, and z=Q%/(sy). Kinematics

W ]



rBiS Kinematics: Traditional Methods . l==

Summary of basic reconstruction methods

Method name Observables Q>

Electron (e) [Eo,E,6) - Ezf—n;z ?

e Conservation of momentum and energy ;
over constrain the DIS kinematics and leads Double angle (DA) [6, 7] [Eo,0,] — i AEjcot’3(1-y)
to a freedom to calculate x, Q?, y from )

o Hadron (h, JB) [4] [Eo,2,7] 55 1T_2y
measured quantities ISigma (1) o EAE] = 5o B
e Each method has advantages and IDA [7] [E.6.1] ' Bl e
disadvantages, and no single approach is EoES [Eo,E.5] ABoE — 4E2(1— )
optimal over the entire phase space. Each Eof% (Eo,0,%)] 4B cot® 2(1 - y)
method exhibits different sensitivity to QED 05y [8] 0,5] :

1-y

radiative effects Double energy (A4) [7] [Eo,E,Ep] (lg;ﬁ“&) 4Eoy(zEp)

b3}

e Once (real) higher-order QED effects are BXT EE2E =
considered, various methods yield different B BT (BopT)  2E-EI/ET b
results and the calculated quantities for Q?, :
y and x are not representative for the y/Z +
p scattering process at the hadronic vertex.

Sigma () [9] [Eo,E,%,0] Qs
eSigma (¢3) [9] [Eo,E,%,0] 2EoE(1 +cosf) ~ E0icos(3i3c)

Table 1. Summary of basic reconstruction methods that employ only three out of five quantities:
Ey (electron-beam energy), E and 6 (scattered electron energy and polar angle), ¥ and v (lon-

gitudinal energy-momentum balance, ¥ = Y ypg(Ei — p-,i), and the inclusive angle of the HFS).
Alternatively, the A4 method makes use of the HFS total energy Ej. Shorthand notations are used

Table taken from Arratia et al., NIM-A 1025 (2022): 166164
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Example in one specific bin

®DA, Bin 2

Deeply Learning DIS

DIS fundamental
process @QEIC

l(];;) (Born level) l'(k?’)

Sa7s| ®EL, Bin 2 ®JB, Bin 2

Z/v* /WE(@

- I H(P")
h(P) < Hadron

remnant

DIS beyond the Born approximation has a complicated
structure which involve QCD and QED corrections

350530 | NN:

e Use of DNN to reconstruct the kinematic observable x, Q?, y in the study of " B: 167
neutral current DIS events at ZEUS and H1 experiments at HERA. ik

e The performance compared to electron, Jacquet-Blondel and the
double-angle methods using data-sets independent of training

e Compared to the classical reconstruction methods, the DNN-based
approach enables significant improvements in the resolution of Q? and x

ables in b Vof z and Q?
defined as the 3 of the
and log(Q?) -

First application of DL for regression of DIS kinematics
M. Diefenthaler, A. Farhat, A. Verbytskyi, Y Xu. "Deeply learning deep inelastic scattering kinematics." EPJ C 82.11 (2022): 1064.

“Parameters"
inference

Event-level
Signatures

24




|Input Features =

Event-level
Signatures

e Define variables to characterize the strength of QED radiation  Benchmark: input features and H1 MC
dataset of paper NIM-A 1025 (2022) 166164*

Yetan 3 S+ %
gt = 1-Be = o2 g bl = o2
T Y.tan 3 2‘Eb
7 features to help indicate QED radiation in the event + additional 8 features )"
e The values of pbal and pbal
e Scattered-electron quantities pr., p,. and E.

e The energy, n, and A¢ of the reconstructed photon in the event that is closest to the
electron-beam direction, where A¢ is with respect to the scattered electron.

HFS four-vector quantities T, p, 5 and E},.

e The sum ECAL energy within a cone of AR < 0.4 around the scattered electron Ad(e, h) between the scattered electron and the HFS momentum vector
) .
divided by the scattered-electron track momentum.

The difference ¥, — X.
e The number of ECAL clusters within a cone of AR < 0.4 around the scattered

electron.
Tot. 15 input features Dataset Training Events Validation Events Testing Events  Size on Disk

H1 8.7 x 108 1.9 x 10° 1.9 x 10° 8 GB

*M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “Reconstructing the kinematics of deep inelastic scattering with deep learning", 25
NIM-A 1025 (2022): 166164

HC



C. Fanelli, J. Giroux, “ELUQuant: Event-Level Uncertainty Quantification” arxiv:2310.02913 [cs.LG]

E L U Q u a n t (NeurlPS 2023 and accepted on Mach. Learn. Sci. Techn., 2024) |
= LReg. + YL Phys. + BLNF.

Measured Inpu‘r
‘ fl ,NV ‘

Bayes Block (64,128)
Bayes Block (128,256)

Bayes Block (256,128)
Bayes Block (128,64)

MNF Linear (64,3) MNF Linear (64,3)

<z Q% y> < logo? lugrr,, lngrr:,-; >

Inferred Output

£Tot.

Event-level
Signatures

Learn the Posterior over the weights
) |[p(W)) + log (21, |[W) — log q(z1; )]

Access aleatoric (statistical) as a function of regressed output [2]

Constrain the physics

Lphys, = Z log Q‘ (log s; + log &; + log v;)

[1] C Louizos, M Welling International Conference on Machine Learning; arXiv:1703.01961 Multiplicative Normalizing Flows for Variational Bayesian Neural Networks 26
[2] A. Kendall and Y. Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." Adv. Neural Inf. Process. 30 (2017).



C. Fanelli, J. Giroux, “ELUQuant: Event-Level Uncertainty Quantification” arxiv:2310.02913 [cs.LG]
(NeurlPS 2023 and accepted on Mach. Learn. Sci. Techn., 2024)

ELUQu

Jacquet-Blondel DA method e method Jacquet-Blondel DA method e method Jacquet-Blondel DA method e method

N
S

0.5 <Yiue <0.8

Each method has
advantages and
disadvantages, and no
single approach is
optimal over the entire
phase space. Each
method exhibits different
sensitivity to QED
radiative effects
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e
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rue < 0.05 0.05 < Yyrue
s o

~

0.01<y,

o

05 1.0
Ytrue

1.50.5

1.0 1505
Yytrue

1.0
YYrue

1505 1.0
Yytrue

1505 1.0 15
Yytrue

Y Bin

DA Method DNN RMS

Aleatoric

Y Bin

e Method DNN RMS

Aleatoric

Y Bin

DA Method DNN RMS Aleatoric

(0.5,0.8)
(0.2,0.5)
(0.1,02)
(0.05,0.1)

0.147955
0.134833
0.145530
0.175290
0.252723

0.061922
0.075418
0.097903
0.132783
0.184589

0.057942
0.061706
0.071238
0.082945
0.115453

(0.5,0.8)

(0.2,0.5)

(0.1, 0.2)
(0.05,0.1)
(0.01, 0.05)

0.056694
0.055787
0.054219
0.053403
0.053470

0.044052
0.037505
0.033230
0.032501
0.032139

0.041349
0.032280
0.029640
0.029411
0.029431

(0.5,0.8)

(0.2,0.5)

(0.1,0.2)
(0.05, 0.1)
(0.01, 0.05)

0.060537
0.082115
0.098631
0.127276
0.158493

0.031194
0.053126
0.078143
0.109309
0.147391

0.034643
0.044249
0.061840
0.078276
0.120546

(0.01, 0.05)

Table 2: Aleatoric RMS Comparions -X Table 3: Aleatoric RMS Comparison - Q2 Table 4: Aleatoric RMS Comparison Y

° Performance similar to DNN

e Closure test on aleatoric when epistemic is negligible and distribution is gaussian

*M. Arratia, D. Britzger, O. Long, B. Nachman, et al., “NIM-A 1025 (2022): 166164 (DNN)



rEbmparison between DNN and BNN

Ratio to Truth Error Comparison - x 040Ratio to Truth Error Comparison - Q2 0s0 Ratio to Truth Error Comparison - y

Aleatoric Component e Aleatoric Component
Epistemic Component

e RMS (DNN)

e Aleatoric Component ®
Epistemic Component ’ Epistemic Component

e RMS (DNN) : e RMS (DNN)

Uncertainty
Uncertainty
Uncertainty

e (from table before) The RMS (ELUQ) roughly coincide with that of DNN as seen previously
e The RMS (DNN) for x and y is larger at low y given the distributions are broader
e The epistemic is systematically smaller than aleatoric component.

At large y, for x and y the total uncertainty (epistemic+aleatoric) close to RMS of DNN
28

— Reporting uncertainty at the level of the event (e.g., RMS from other methods) —




ELUQ «- Jacquet-Blondel «- ELUQ Jacquet-Blondel <- ELUQ Jacquet-Blondel
DNN --+- DA method ¥, DNN --+- DA method DNN = DA method
- ELUQ (Error Weighted) electron method -+~ ELUQ (Error Weighted) electron method --- ELUQ (Error Weighted) electron method

< Xpred/Xtrue >
2 2
< Opred/otrue
= {3
°
3
3
< ypred/}/true >

of 9
© ©
[~
=

DNN and ELUQ “outperform other
methods over a wide kinematics range”
NIM-A 1025 (2022): 166164

The RMS resolution for y and x increase at

Iowery, even for the DNN reconstruction. ’ =~ RMS (ELUQ) +- RMS (Jacquet-Blondel) ’ ’ -+~ RMS (ELUQ) RMS (Jacquet-Blondel)
. . RMS (DNN) ----- RMS (DA method) RMS (DNN) --e-- RMS (DA method)

i Thls resu,ts e may be att”bUted to - Total (ELUQ) RMS (electron method) - Total (ELUQ) RMS (electron method)

further acceptance, noise, or resolution

effects that deteriorates the measurement

of the HFS”

>)

-

2
true

+- RMS (ELUQ) RMS (Jacquet-Blondel)
RMS (DNN) ~ --- RMS (DA method)
- Total (ELUQ) RMS (electron method)

o(< Xpred/Xtrue > )
o
&
o

a(< Ypred/ytrue >)

o
=)
o

0( < Q24lQ

A “simple” DNN does not have per se

-+ ELUQ uncertainty at the event level. In the plots
DNN : we use the RMS from final distributions.

--+-- ELUQ (Error Weighted)

[
P

-
-

Removing events with large relative
event-level uncertainty (with respect to the
network prediction) improve the ratio to
truth and reduce inaccuracy

o
©
o
©

< XprealXtrue >
5
< Xpred/Xtrue >

Notice these cuts do not use any
information at the ground truth level

o
©

o
N

We know that ELUQuant is sensitive to
anomaly detection. Performance studies
are underway. 2 9

°
o




r?ime performance

Training Parameter

value
Max Epochs 100
Batch Size 1024
Decay Steps 50
is i ' Decay Fac :
e This is great, but what about compute time? exay Bactor () 0.1

Physics Loss Scale («)
KL Scale (8)
Training GPU Memory

1.0
0.01
~ 1GB
~ TMB
611,247
~ 1 Day

Inference Parameter
Number of Samples (N)
Batch Size

Network memory on local storage
Trainable parameters
Wall Time

Inference GPU Memory Inference specs of ELUQuant
Inference Time per Event

Inference specs of ELUQuant

e In computational terms, ELUQuant at inference showed an impressive rate of 10,000 samples/event
within a 20 milliseconds on an RTX 3090.

e (Can we do faster than this?

o Several ways. A rapid, streamlined approach is distilling this knowledge in a simpler but faster network
(we explored a DNN with 450k parameters) called in the following “Fast UQ”, obtaining an effective
inference time of 7-8us/event using batch ~0.5M events

J.g_ﬁecrson Lab

ing the Nature of Mate

30



rﬁhfolding

Unfolding

@OmniFold

Detector-level Particle-level

e e

Rapgap,
Djangoh,

=
)
=
]
=
=}
8
7]

Using ML for differential cross section rements
(OmniFold and otherwise). These tools for recent
measurements with DIS from HERA data and the same tools
could be used at the EIC.

[11A. Andreassen, P. T. Komiske, E. M. Metodiev, B. Nachman,
and J. Thaler Phys. Rev. Lett. 124, 182001 2020

— unfolding at the histogram level —

Unfolding

Lepton-jet correlation in DIS at H1

e  First example of ML-assisted unfolding (MultiFold
method): enables simultaneous and unbinned
unfolding in high dimensions.

e This development will allow us to do unbinned
cross-section measurements.

[2] V. Andreev et al. (H1 Collaboration), “Measurement of Lepton-Jet
Correlation in Deep-Inelastic Scattering with the H1 Detector Using
Machine Learning for Unfolding” Phys. Rev. Lett. 128, 132002 31



https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.132002
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.182001

I I BU2 . I nver t 1 b 1 (o B aye S 1 an Benchmark: datasets of OmniFold

(1911.09107) for jet physics, pp Vs=14 TeV,

Unfolding with Uncertainty sreseses""""

Unfolding

Low Density High Density

e Learns an invertible mapping between injected and
reconstructed events (bonus: fast and accurate
generation of data)

s
2
=
I
s

e Utilizes Bayesian Networks (cf. ELUQuant)

e Allows to unfold a measured event and get posterior
(with uncertainty)

Jet Mass [GeV]

e Further treated by MCMC

—_ unfold”’]g at the event |eve| —_ Figure 4: Full 600k events now.

C. Fanelli, J. Giroux, IBU? “Invertible Bayesian Unfolding with Uncertainty” 32



Gen. Herwig —— |BU(3) *+30Guaa Gen. Herwig —— IBU(3) *30gua Gen. Herwig —— IBU(3)
Omnifold [1-Step] ~ —=— cINN 2 Omnifold [1-Step] ~ —— cINN ] Omnifold [1-Step] ~ —=— cINN

o
o
g

Normalized Entries
°

Normalized Entries

°
o

o
°

& ES a i BU i Omnifold 3 CNN v .
Hhalaal RTINS S S S y. 6 { g P— sata2inediseasnstapat
. l - \ L . .
et Mass [GeV] \ et Wldth n ;
J - D J constituents

Omnifold

Ratio to Truth

°
ol

*+30guad. —— IBU(3) *30guad Gen. Herwig —— IBU(3)
—— I1BU? o Mo\d[l Step] - cINN 2 Omnifold [1-Step] - cINN

2

IBU? differently from the
other methods provide UQ
calculated at the event level

Normalized Entries
Normalized Entries

IBU? features an uncertainty
band

Ratio to Truth
Ratio to Truth

°

C. Fanelli, J. Giroux, IBU? “Invertible Bayesian Unfolding with Uncertainty”



rKi/ML in Streaming Readout

SRO quickly becoming the new standard readout paradigm for modern NP and HEP experiments.

A triggerless streaming architecture gives much more flexibility to do physics (max data preservation,
diverse topologies). Data flow unimpeded in parallel channels, organized in multi-dimensions and time.

Manageable event rates at EIC (500 kHz).

Detector

Aggregation and
Zero suppression

Rates quoted are at output of each
stage

|
| Global timing

\
(R GE—

Online Filter

~100 m fiber

I
I
Detector

-]

Factor of 100 in
data reduction
To Data Center

I_ Front End Board (FEB) _| | Front End Processor (FEP) I Data A::gg\(s}lggg (DAQ)

100 Tbps 10 Tbps

100 Tbps

10 Tbps

SRO will further the convergence of online and offline analyses, with the possibility of incorporating Al/ML for
fast reconstruction and calibrations, allowing for a rapid turnaround of physics data and results

[1] J. Bernauer, C. Dean, C. Fanelli, J. Huang, et al, NIMA 1047 (2023): 167859.
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rB}ototype experiments for next-gen SRO

ML deployed on stream of real data

CLAS + EPSCI @JLab

Hierarchical clustering in JANA2

e CLAS12 SRO setup
e TriDAS SR back end

e JANAZ2 reconstruction framework

The CLAS12 Forward Tagger, JLab

Electromagnetic
calorimeter (PbWO)

Feb 2020 data

4000
Micromegas
Tracker W
c
3000} ¢

cl

*—_ Scintillation
Hodoscope

1000

entries/2.0 [MeV/c?|

|
’(H)H'
i
|

[ I I I | M(highest ene. clul, clu2) [MeV/c?]
0 N
Tt —ﬁ_——
I

Hierarchical clustering VS traditional clustering of energy deposited by photons; Al
robust against variations in experimental conditions* (uncalibrated data in SRO)

[1] F. Ameli, et al., Streaming readout for next generation electron scattering experiments, Eur. Phys. J. Plus, 2022 35




| AI/ML in SRO

INTT Silicon Strips:
78um x 16mm (A)/20mm (B)
b

NP Physics Streaming DAQ Real-time Al

* Diverse topology * New physic capability accessible only via * Specialized Al algorithm for reliable and
e Stringent sys. Ctrl streaming DAQ high-performance data reduction
* Max data preservation * Adopted for SPHENIX and EIC * Novel hardware emerging for high-
* Require data reduction computationally throughput Al computing
* See also JH QNP22 [link]

MVTX Silicon pixels:
27um x 29um

Physics need - Streaming DAQ - Opportunity for real-time Al = Enhanced physics program
'.- by J. Huang @ QNP2022 AI/ML f

sPHENIX Tracking:
- MVTX + INTT(fast)

- TPC(slow)

FastML.: Fast Data Processing and Autonomous Detector Control for sPHENIX and Future EIC Detectors Intel“gE(EBtOEé(T%mrr‘]tdzzr%gg_gggglme Al

Collaboration of NP, HEP and CS:
LANL, MIT, FNAL, NJIT, ORNL, UNT, CCNU

Identify D/B hadrons with real-time ML
° Topology of D/B decays INTT
° Monitor collision vertex
° Feedback for improvement

his 4 ml
/

d
( Gompressed
\  model

Very high p+p collision rate: ~3MHz

N A

Low rate of rare signals: ~150Hz (beauty for eg) B

Limited DAQ trigger bandwidth: ~15 kHz
(or 0.5% of p+p collisions) Lo DCAXY @aph Gnvolutions @raph Gnvolutions

Machine learning model

£ optimization, compression

No effective conventional triggers available

[1] Huang, Yi, et al. "Efficient Data Compression for 3D Sparse TPC via Bicephalous Convolutional Autoencoder." 2021 20th IEEE (ICMLA). IEEE, 2021.

[2] F. Fahim, et al., “HLS4ML” arXiv:2103.05579 (2021) 36
[3] C. Dean, Autonomous selection of physics events: A RHIC demonstrator for EIC physics — AI4EIC2023

)
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https://indico.bnl.gov/event/19560/contributions/83354/attachments/51216/87598/ML4HF_C_Dean_20231128.pdf
https://indico.jlab.org/event/344/contributions/10499/attachments/8253/11854/AI%20in%20StreamingDAQ.pdf

I_Foundation Models

@openal

Foundation models are Al models trained on broad data sets, allowing for versatility across multiple applications, and have been pivotal
in transforming Al, particularly in powering advanced chatbots and generative Al applications.

The first examples of foundation models were pre-trained language models like Google's BERT and the "GPT-n" series of OpenAl's

Foundation models have been developed across a range of modalities, see, e.g., DALL-E and Flamingo for images, MusicGen for
music, RT-2 for robotic control, etc

Emerging interesting research activities in particle physics (see, e.g., talk at AI4EIC) inspired by these approaches

Research. APlv ChatGPT. Safety Companys

Research

DALLE 3

DALLE 3 understands significantly more nuance and detail
than our previous systems, allowing you to easily translate
your ideas into exceptionally accurate images.

S ATIAS
WA
2 EXPERIMENT
hitp://atlas.ch
.Meta MusicGen Al

See AI4EIC2023, session “ "


https://indico.bnl.gov/event/19560/contributions/83301/attachments/51307/87737/AI4EIC%20TrackingBert.pdf
https://indico.bnl.gov/event/19560/timetable/#20231130.detailed

RAG-based summarization Al for EIC

R
4

“Frozen”

What is Retrieval Augmented Generation (RAG)?

e  Access up to date information without explicitly training of LLM.
° Reduce “Hallucination” of LLM.

. Grounding LLM to truth to increase reliability by providing citations.

Why need RAG for Large Scale Physics Experiments? Y
EIC large scale experiment (e.g., EICUG 1,400 users, ePIC 170+ institutions) * Q

. Regular updates to documents, Run Wiki 4
. Newbies may take months to get to know the full experimental details.

: : ) ) o) Brookhaven  Je on Lab
. Tot document size approximately proportional to scale of experiment National Laboratory

“Ingestion” of data

e  Creation of the vectorized knowledge base.
. Every node below influence RAG performance
e 200 recent arXiv papers on EIC (since 2021)

“Inference”

° Given a prompt compute similarity index to most similar
vectors in VectorDB

° Use LLM to further narrow down and summarize the finding

Chunking g Store in

UnStructured VectorDB - Response
= : Template RAG based
= ' ChatGPT3.5 | summary
— INSTRUCT

Report

—
——

Embedding g tuned
i N

Model



https://indico.bnl.gov/event/19560/contributions/82240/attachments/51190/87738/A%20Summarization%20Agent%20for%20EIC-1.pdf
https://www.eicug.org/content/map.html

I_RAG-based summarization Al for EIC

Methods to evaluate RAG’s performance
° RAGAS score
e LLM as Judge®!

1. Faithfulness — \

|Number of claims that can be inferred from given context|
| Total number of claims in the generated answer|

Faithfulness score =

2. Answer relevance —

#claims correctly responded
Answer relevance = | ‘

[#claims in given text|

. Context relevance —

|# relevant unique refs|

3
\Context relevance =

|# refs retrieved| /

Methods to improve RAG architecture

Question  What is the pixel size and expected momentum

resolution at 2GeV from a MAPS ITS3 tracking layer

Response

« The pixel size of the MAPS ITS3 tracking layer is 10 $\mu$m
</2108.08314v1 </ARXIV_ID>

<ARXIV_ID>http: org, 3 59
<ARXIV_ID> http://anxiv.org/abs/2210.08609
The expected momentum resolution at 2 GeV from a MAPS [TS3 tracking layer is 2.5% to 15% of the initial
momentum <ARXIV_ID>http://arxiv.o /2305.15593v1 </ARXIV_ID>
<ARXIV_ID>http://aniv.org/abs/2210. V2 </ARXIV_ID>

Faithfulness Answer Context
relevance relevance
100% 50% 70%

° Better chunking strategies. LateX Splitter, TWikiSplitter

Metadata based filtering.

[ ]
° Response Template fine-tuning. INSTRUCT tuning
° Model fine-tuning. Computationally costly.

Question What are the dimensions of MAPS
detector used in EIC?

Response

¢ The MAPS detector used in the EIC has dimensions ranging from 3.67 cm to 43 cm, with a
sensor size of 10x10 cm <ARXIV_ID>['http://arxiv.org/abs/2203.07626v2",
*http://arxiv.org/a 24701, Janxiv.org/abs/2210

2079v2", "http://arxiv.org/abs/2302.01447v1"]

The ePIC MAPS electron endcap detector has a geometry parameter listed, and the ePIC

MAPS hadron endcap detector also has geometry parameters listed <ARXIV_ID>

[http://arxiv.org/abs/2203.07626v2, *http://arxiv.org/abs/2305.15593v1",

*http://arxiv.org/abs/2305.15593v 1", *http://arxiv.org/abs/2305.15593v 1",

*http://arxiv.org/abs/2305.15593v1]

*http://arxiv.org/at

The ePIC MAPS vertex detector design can reach as low as 0.05, and the imaging layers of
MAPS sensors provide excellent position resolution <ARXIV_ID>
[http://arxiv.org/abs/2203.07626v2", *http://arxiv.org/abs/2305.15593v1]

The MAPS sensor used in the EIC is based on low-mass, low-power consumption MAPS in
65 nm technology <ARXIV_ID>['http://arxiv.org/abs/2203.07626v2']

The MAPS sensor used in the EIC is based on low-mass, low-power consumption MAPS in
65 nm technology <ARXIV_ID>['http://arxiv.org/abs/2203.07626v2']

#of ithful Answer Context Answer
Hallucination F ess relevance relevance correctness
3/50 26% 62% 100% Qualitative

For more details, see K. Suresh’s presentation at AI4EIC

https://indico.bnl.gov/event/19560/contributions/82240

[

Demo (for this presentation): htips://06b8-128-239-17-254 ngrok-free.app/ 39



https://indico.bnl.gov/event/19560/contributions/82240/attachments/51190/87738/A%20Summarization%20Agent%20for%20EIC-1.pdf
https://docs.ragas.io/en/latest/concepts/metrics/index.html
https://arxiv.org/pdf/2311.09476.pdf
https://indico.bnl.gov/event/19560/contributions/82240/
https://indico.bnl.gov/event/19560/contributions/82240/
https://06b8-128-239-17-254.ngrok-free.app/

|_Conclusions _l

e Al/ML can be integrated into virtually every facet of the data processing pipelines of NP experiments

e Next generation QCD experiments like EIC are being designed during the Al revolution, and can take
advantage of Al/ML since the design and R&D phase. The EIC detector(s) may the first large-scale
detectors optimized with machine learning.

e Hadronic physics will increasingly benefit from ML; when it comes to study non-perturbative effects, ML
allows a “holistic” approach (full event information) and can be trained on real data

e Next generation QCD experiments will take full advantage of SRO and Al using heterogeneous computing:

o Near real-time analysis / control (e.g., intelligent / autonomous detectors). A common theme is
applying Al-methods with well-understood UQ (both systematic and statistic).

o If we understand the uncertainties and biases, near real-time analysis with SRO can result in a
paradigm shift for next generation QCD experiments, with faster turnaround time to produce scientific

results.
il

e Foundation models have emerged as some of the most powerful instruments available today, yet their
potential has not been fully explored in our field.







H1 and ZEUS

Q*=10 GeV*

Without gluons there would be no
nucleons, no atomic nuclei, ...
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Hadron Calorimeter Endcap
Electromagnetic Calorimeter

Cherenkov Counter

Barrel EM Calorimeter
DIRC
Solenoidal Magnet

RICH Detector
Barrel Hadron Calorimeter

Transition Radiation Detector
Preshower Calorimeter
Electromagnetic Calorimeter
Hadron Calorimeter Endcap

[1IR. A. Khalek, et al. "Science requirements and detector concepts for the electron-ion
collider: EIC yellow report." NIMA 1026 (2022): 122447 .
[2] HERA Coll. , JHEP 1001:109(2010)

Neutral-current Inclusive DIS: e + p/A — ¢ + X;
for this process, it is essential to detect the scattered
electron, ¢/, with high precision. All other final state
particles (X) are ignored. The scattered electron is crit-
ical for all processes to determine the event kinematics.

Charged-current Inclusive DIS: e+ p/A — v+ X;
at high enough momentum transfer Q?, the electron-
quark interaction is mediated by the exchange of a W*
gauge boson instead of the virtual photon. In this case
the event kinematic cannot be reconstructed from the
scattered electron, but needs to be reconstructed from
the final state particles.

Semi-inclusive DIS: e+ p/A — ¢’ + h*0 + X, which
requires measurement of at least one identified hadron
in coincidence with the scattered electron.

Exclusive DIS:e+p/A —s e/ +p' /A + /W0 /VM,
which require the measurement of all particles in the
event with high precision.




rEiectron Identification =

Performance of deep networks like CNN reveal there is information in low-level
image that is not captured by the suite of high-level features built by physicists

“Learning to identify electrons”
Aim is to identify new high-level features that
bridge the gap between existing performance and
superior performance of CNN

= background == background
3 signal [ signal

Search done through energy flow polynomials (EFP)

Density
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[1] J. Collado, J. N. Howard, T. Faucett, T. Tong, P. Baldi, and D. Whiteson Phys. Rev. D 103, 116028 — (2021), (2022)



https://indico.bnl.gov/event/16586/contributions/68782/attachments/43775/73801/ML_leptons_oct2022.pdf

rELUQuant: Physics-informed term
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e The plots report the true inaccuracy, and the weighted epistemic uncertainty, which is
larger the larger the true inaccuracy is

e The physics-informed term (blue) contributes to decrease the true inaccuracy.
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Comparison
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ElLUQuant: Towards near real-time

Q?%(pred)/Q?3(true) vs y

X(pred)/x(true) vs y

ELUQ
DNN

--e-- ELUQ (Error Weighted)
--e-- Fast UQ (Error Weighted)

- ELUQ
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--e-- ELUQ (Error Weighted)
--e-- Fast UQ (Error Weighted)
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ELUQuant/Fast UQ: Very similar
performance at the event level,
predictions on kinematics and
epistemic + aleatoric uncertainties
within ~5% on average




r?bwards "autonomous” experiments

e Near real-time monitoring tasks for GlueX in Hall D

e It was the online monitoring coordinator’s job to sift through hundreds of images produced in the previous
24 hours, looking for missed anomalies. This “human-in-the-loop” method was prone to errors.

e Hydra was created to tackle these challenges. Hydra is an Al system that leverages Google’s Inception v3
for image classification. It has been shown to perform better than humans at diagnosing problems.

Last Updated:  14.27 second(s) ago

See D. Lawrence’s talk
at APS23 for details and
other examples

[1] T. Britton, D. Lawrence, K. Rajput, arXiv:2105.07948v1 [cs.CY]
[2] T. Jeske, et al. "Al for Experimental Controls at Jefferson Lab." JINST 17.03 (2022): C03043. — AI4EIC proceedings
[3] T. Britton, B. Nachman. "Accelerator and detector control for the EIC with machine learning." JINST 17.02 (2022): C02022. — AI4EIC proceedings
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https://meetings.aps.org/Meeting/APR23/Session/C15

rﬁbBO: Scaling

W&B dashboard for monitoring

o MOBO stress-testing for
problems with increasing
complexity (design and
objectives) and known Pareto

Multiple metrics
o Accuracy of optimization
o Convergence properties

o Compute resources

Increase in HV w.r.t true pareto



https://wandb.ai/phys-meets-ml/AID2E-Closure-1?workspace=user-karthik18495

|_Candidates for Optimization in ePIC _l

Considering all the constraints as ePIC is in the process of finalizing engineering
designs, we can select those sub-detectors that still have tunable parameters

e B0 magnetic field map, distance between space
(always considered even), central location of tracker

’ 1 e  Momentum resolution, acceptance

ﬁd . e Mirror, sensor

placement, gas,
mirror material (lower

n. costs material)... / P
| &
\ e PID performance, ’
yw COS tS, . BOpf combined function magnet
dual-RICH Far-Forward

=2

Ongoing discussion with working groups to identify potential 49 I



|_Documentation and Qutreach _l

e GitBook and/or other knowledge sharing platforms will be part of the initiatives
related to documentation and outreach

e Offering opportunities for experiential learning with easy access for beginners

Welcome

. This website hosts a mini-col
Al for Detector Design

NNPSS 2022



http://cfteach.github.io/nnpss
https://cfteach.github.io/HUGS23

rxésisted design of future QCD Experiments

Designing detectors is a multi-objective optimization problem!
(detector response, physics gains, costs)

Select the Method of Optimizafion

https://ai4eicdetopt.pythonanywhere.com/

Ta ke fu I | Multi Objective Bayesian Optimization GEANT4 Visualization of the design

advantage of Al
to learn the
Pareto front

Design space:

M U |t|d | m e nSIO n al Cic Design Parameters Table
+ Performance of tl ign Solution
Multiple
Objectives! ‘W
This is a problem where e e ia [e8

with Al-assistance we can
outperform more
conventional strategies

Finer Evaluation of Momentum resolution for Selected Design

]1A. G. Baydin et al. Nuclear Physics News 31.1 : 25-28 (2021).

Differentiable surrogate model + gradient-based optimization

MODE is targeting the use of differentiable programming in design
optimization of detectors for particle physics applications

End-to-end optimization pipelines with surrogate models ML
require modeling of simulations, and collect reference data to train
the implementations.

Detector parameters

Cost constraintsand
detector-related
systematicuncertainties

Cosmic ray

simulator Detector

response

/
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\

Conceptual layout of an optimization pipeline for a muon
radiography apparatus.

] C. Fanelli, Z. papandreou, K. Suresh, et al. Al-assisted optimization of the ECCE tracking system at the Electron lon Collider, NIMA 1047, 167748 (2023)

[1
[2
[3] C. Fanelli, Design of detectors at the electron ion collider with artificial intelligence, 2022 JINST 17 C04038 (2022) 51
[4] F. Torales Acosta et al., “ML for Detector Optimization and Simulation”, talk at AI4EIC2023 [link]


https://indico.bnl.gov/event/19560/contributions/82241/attachments/51233/87626/AI4EIC%20Codesign%20Slides.pdf
https://ai4eicdetopt.pythonanywhere.com/

