A Measurement of Two-photon Exchange in Unpolarized Elastic e⁺and e⁻ Scattering Hall C Collaboration 01/19/2024

John Arrington

Nathaly Santiesteban

MISSISSIPPI STATE

Mikhail Yurov

FRSITY

Form Factors: Rosenbluth Separation

Unpolarized elastic cross section depends on charge and magnetic form factors: $G_{E}(Q^{2})$ & $G_{M}(Q^{2})$

 $\sigma_{\rm R} = d\sigma/d\Omega \ [\epsilon(1+\tau)/\sigma_{\rm Mott}] = \tau \ G_{\rm M}^{2}(Q^{2}) + \epsilon \ G_{\rm E}^{2}(Q^{2})$ $\tau = \mathbf{O}^2 / 4\mathbf{M}^2$ $\varepsilon = [1 + 2(1+\tau)\tan^2(\theta/2)]^{-1}$.35 $\Delta Q^2 = 0.39 \pm 0.01 - \langle Q^2 \rangle = 0.389$ Measure cross section as a function of ε Fit gives p=1.061±0.058 .30 $\chi^2 = 0.200$ **Requires**: .25 Multiple beam energies and scattering angles 02. d G_E² .10 rG.,² .05 .00 0.2 0.8 0.4 0.6 0.0 1.0**θ=0° θ=180°** E

Form Factors: Rosenbluth Separation

Unpolarized elastic cross section depends on charge and magnetic form factors: $G_{E}(Q^{2})$ & $G_{M}(Q^{2})$

 $\sigma_{\rm R} = d\sigma/d\Omega \ [\epsilon(1+\tau)/\sigma_{\rm Mott}] = \tau \ G_{\rm M}^{-2}(Q^2) + \epsilon \ G_{\rm E}^{-2}(Q^2) \qquad \tau = Q^2/4M^2$ $\epsilon = [1+2(1+\tau)\tan^2(\theta/2)]^{-1}$

Measure cross section as a function of ε

Requires:

Multiple beam energies and scattering angles

Lower sensitivity when one term dominates: High Q²: $\tau G_M^{-2}(Q^2) \gg \epsilon G_E^{-2}(Q^2)$

Large uncertainty on G_E at high Q^2

Form Factors: Polarization Measurements

Polarization transfer

Scattering of longitudinally polarized electrons off an unpolarized target.

Form Factors: Rosenbluth vs Polarization

VOLUME 84, NUMBER 7

PHYSICAL REVIEW LETTERS

14 February 2000

Large discrepancy!

Global reanalysis and additional experimental evidence confirmed discrepancy

Questions remain over 20 years

J. Arrington Phys. Rev. C 68, 034325

Two-Photon Exchange: Corrections

Difference believed to be caused by two-photon exchange (TPE) corrections

QED: straightforward to calculate

QED+QCD: depends on *proton internal structure*

Two-Photon Exchange: Corrections

Difference believed to be caused by two-photon exchange (TPE) corrections

QED: straightforward to calculate

QED+QCD: depends on *proton internal structure*

<u>Implication for Rosenbluth Measurements</u> At large Q^2 , the contribution of G_E to σ_R is small

A few-percent TPE correction, with the **correct** *e* **dependence**, could have a major impact

Two-Photon Exchange:
Recent Measurements

$$R \equiv \frac{\sigma^+ p}{\sigma^- p} = \frac{|M_{1\gamma} + M_{2\gamma}|^2}{|M_{1\gamma} - M_{2\gamma}|^2} \rightarrow R_{2\gamma} = 1 - 2\delta_{2\gamma}$$

Ratio of e^+ to e^- is very sensitive to effect from TPE

Two-Photon Exchange:
Recent Measurements

$$R \equiv \frac{\sigma^+ p}{\sigma^- p} = \frac{|M_{1\gamma} + M_{2\gamma}|^2}{|M_{1\gamma} - M_{2\gamma}|^2} \rightarrow R_{2\gamma} = 1 - 2\delta_{2\gamma}$$

Ratio of e^+ to e^- is very sensitive to effect from TPE

Recent e^+/e^- experiments

VEPP-3 (2009), CLAS (2010-2011)

Moderate increase in $R_{2\gamma}$ at Q² = 1.45 at low ε

OLYMPUS (2013)

Observe an epsilon-dependent effect

"Data favor smaller $R_{2\nu}$ "

9

Two-Photon Exchange:
Recent Measurements

$$R \equiv \frac{\sigma^+ p}{\sigma^- p} = \frac{|M_{1\gamma} + M_{2\gamma}|^2}{|M_{1\gamma} - M_{2\gamma}|^2} \rightarrow R_{2\gamma} = 1 - 2\delta_{2\gamma}$$

Ratio of e^+ to e^- is very sensitive to effect from TPE

Recent e^+/e^- experiments ◆VEPP-3 □ CLAS **OLYMPUS** 3 TPE effects predicted to be largest at low ε and Q^2 GeV² large Q² (most calculations) 2 Largest G_E/G_M discrepancy observed for Q^2 Ŀ Ō Ē ф above 2-3 GeV^2 Experiments had limited ε and Q² coverage 0.0 0.2 0.4 0.6 0.8

10

1.0

e

Two-Photon Exchange: Theory Predictions

- Hadronic (Blunden et al.)
 - Modest ε dependence at moderate Q^2
 - Weak Q^2 dependence
- Partonic/pQCD (Chen et al.,Kivel et. al)
 - Valid at high Q^2
 - Significant ε dependence at large Q^2
 - Weak Q^2 dependence
 - Match Rosenbluth slope for $Q^2 > 5 \text{ GeV}^2$
- Dispersion relations
 - Borisyuk and Kobushkin
- Phenomenological
 - Bernauer

Variations among different models Size of TPE effect ε and Q^2 dependence

11

PR12+23-012

A Measurement of the Two-photon Exchange in Unpolarized Elastic Positron-proton and Electron-proton Scattering

- 1.) Modified version of Rosenbluth separation using $e^+ \& e^$
 - a.) Proton detection
- 2.) Proton detection allows for precision in extracting the ε dependence of the cross section
 - a.) Cleaner extraction of G_E/G_M

PR12+23-012

A Measurement of the Two-photon Exchange in Unpolarized Elastic Positron-proton and Electron-proton Scattering

- 1.) Modified version of Rosenbluth separation using $e^+ \& e^$
 - a.) Proton detection
- 2.) Proton detection allows for precision in extracting the ε dependence of the cross section
 - a.) Cleaner extraction of G_E/G_M
- 3.) Direct comparison of e^+ & e^- S-R data will test the assumption that the discrepancy at high Q² is due to TPE effects
- 4.) Wide kinematic range: $1.4 < Q^2 < 5.5 \text{ GeV}^2$
- 5.) Does not require rapid beam changes or identical beam characteristics

Advantages of Super-Rosenbluth: *Momentum*

$\boldsymbol{\varepsilon}$ dependence of momentum:

Proton momentum fixed at fixed Q^2 Momentum dependent corrections cancel No ε dependence

Advantages of Super-Rosenbluth: Cross Section

ε dependence of momentum: Proton momentum fixed at fixed Q² Momentum dependent corrections cancel No ε dependence

ε dependence of cross section:

Higher statistical precision at low ε Minimal ε dependence

Rate dependent corrections & uncertainties

Advantages of Super-Rosenbluth: *Kinematic Uncertainties*

Advantages of Super-Rosenbluth: *Kinematic Uncertainties*

completely in extraction of G_E/G_M

PR12+23-012

Experimental Overview

- Three linac settings; 11 beam energies
- Ten Q^2 points: 1.4 5.5 GeV²
- Four or five ε points at each Q^2

Standard Hall C configuration

- 10 cm liquid hydrogen target
- HMS (proton arm): 11°-54°
- SHMS (lepton arm): 10°-39°
- Positron beam current: $1 \mu A$
- Electron beam current: $20 \,\mu A$

PR12+23-012 Sensitivity to Various Physics

PR12+23-012 *Beam Time Request*

	positron ti	electron time[hrs]	
$Q^2 = 1.40$	5×1.2 hrs	6	5
$Q^2 = 1.69$	$5 \times 1.8 \text{ hrs}$	9	5
$Q^2 = 1.94$	5×2.4 hrs	12	5
$Q^2 = 2.4$	$5 \times 4.0 \text{ hrs}$	20	5
$Q^2 = 2.74$	5×6.4 hrs	32	5
$Q^2 = 3.15$	$5 \times 11 \text{ hrs}$	55	6
$Q^2 = 3.81$	5×22 hrs	110	11
$Q^2 = 4.33 \ (0.5\% \text{ statistics})$	5×24 hrs	120	19
$Q^2 = 4.86 \ (0.6\% \text{ statistics})$	$5 \times 26 \text{ hrs}$	130	22
$Q^2 = 5.5 \ (0.7\% \text{ statistics})$	4×38 hrs	112	25
High stat. coincidence runs	$8 \times 8 \text{ hrs}$	64	32
Dummy target data	$(20\%~{\rm of}~{\rm LH2}~{\rm data})$	136	32
Carbon pointing runs		12	12
Total production		818	184
Target boiling studies		4	4
BCM calibrations		8	8
Checkout/calibration		12	12
Beam energy measurements	$12 \times 1 \text{ hr}$	12	12
linac changes	3×12 hrs	36	36
pass changes	$9 \times 8 \ { m hrs}$	72	72
kinematics changes	$40 \times 0.5 \text{ hrs}$	20	20
Total overhead/calibration		164	164
Total		982 (41 days)	348 (15 days)

PR12+23-012 *Beam Time*

	positron tin	electron time[hrs]	
$Q^2 = 1.40$	$5 \times 1.2 \text{ hrs}$	6	5
$Q^2 = 1.69$	$5 imes 1.8 ext{ hrs}$	9	5

Summary: The PAC recognizes the strong science case of this important measurement, which may provide a definitive answer to the long-standing question of the role of TPE in form-factor extractions. To fully achieve the scientific goals of the experiment, it is essential to include measurements taken with non-standard positron beam energies. The experiment is complementary to the Hall B proposal (PR12+23-008), also reviewed by this PAC. The PAC recommends conditional approval (C1) for the requested beam time of 56 days. A C1 review by the Lab should be conducted at an appropriate time and verify that positron beams will be available with the parameters required for the experiment.

	Total		982 (41 days)	348 (15 days)	
15 days (e ⁻)	Total overhead/calibration		164	164	
	kinematics changes	$40 \times 0.5 \text{ hrs}$	20	20	
41 days (e^{+})	pass changes	$9 \times 8 \text{ hrs}$	72	72	
Approved for: 56 PAC days	linac changes	3×12 hrs	36	36	
	Beam energy measurements	$12 imes 1 ext{ hr}$	12	12	
	Checkout/calibration		12	12	
	DOM Cambrations		0	0	

PR12+23-012: *Summary*

- No direct experimental evidence of the G_E/G_M discrepancy
 - Discrepancy is believed to be due to TPE
- Previous TPE measurements outside of Q² region where discrepancy is large
- Precise Super-Rosenbluth separations measurements, using both positrons and electrons over wide Q² range, will allow for first direct verification of the idea that TPE explain the form factor discrepancy
- Direct comparison of e^+ and e^- Super-Rosenbluth separations
 - Signal for TPE that is twice as large
 - Isolates TPE contribution
 - Does not require assumptions for PT results
- Approved by PAC 51 with A- rating

Thank You

Super-Rosenbluth: *e*⁺ *vs. e⁻ Comparison*

- Data from E01-001 (Super-Rosenbluth)
- Projected Super-Rosenbluth using positrons (Red dashed line)
- Slope from PT (Black dashed line)

*Recent study using Maximon & Tjon indicate the effect from TPE may smaller by $\sim \frac{1}{3}$

TPE effects still dominant G_E contribution above 2.5 GeV²!

Super-Rosenbluth: *e⁺/e⁻ Ratio**

Error Budget

*Uncertainty given is on the slope rather than the individual cross sections

Source	size	δσ/σ total	δσ/σ G _E /G _M
Statistics	0.5%	0.5%	0.5%
Energy (fixed offset)	0.04%	0.2%	*0.1%
Energy (random)	0.04%	0.2%	0.2%
θ_{p} (fixed offset)	0.30 mr	0.2-0.5%	0.3%
θ _p (random)	0.20 mr	0.1-0.3%	0.1-0.3%
Dead Time		0.1%	<0.1%
Dummy Subtraction		0.2-0.5%	0.2%
Background Subtraction		0.1-1.0%	*0.3%
Radiative Corrections		1.2%	0.2%
			*0.2%
Luminosity		0.6%	0.2%
Proton Absorption		1.0%	≪0.1%
Acceptance		~2%	≪0.1%
Efficiency		0.5%	≪0.1%
Total		~2.9%	0.42-0.50% *0.52%

Break Down of Time

Setting	Beam Energy [GeV]	Percentage of Time	
1	1.3	0.55%	
1	1.95	2.56%	
1	2.6	6.75%	
1	1 3.25 9.45%		19.3%
2	1.46	0.95%	
2	2.92	8.78%	
2	3.65	10.8%	20.5%
3	2.2	5.41%	
3	4.4	21.6%	
3	6.6	18.2%	
3	11.0	14.9%	60.1%

Projected Uncertainties: e⁺ and e⁻ Super-Rosenbluth Separation

30

Advantages of Super-Rosenbluth

Q ²	Е	θ _e [degrees]	θ _p [degrees]	σ _e [nb/sr]	σ _p [nb/sr]	E' _e [GeV]	E' _p [GeV]
2.0	0.08	123	11.4	0.045	0.77	0.4	1.7
2.0	0.98	7.7	41.8	10	1.7	9.9	1.7

Hall C HMS Scattering Angle 10.5° - 90.0°

Advantages of Super-Rosenbluth: *Kinematic Uncertainties*

32

Advantages of Super-Rosenbluth: *Kinematic Uncertainties*

Advantages of Super-Rosenbluth: *Radiative Corrections*

PR12+23-012 *Background Subtraction*

