

The Large Area/Acceptance Detector (LAD) experiment (E12-11-107) - Status

Carlos Ayerbe Gayoso On behalf of the LAD experiment group

Motivation

The EMC effect is a modification of the nucleon SF in bound nucleus.

LAD will test the EMC-SRC hypothesis

e

- Spectator-tagged DIS on deuterium
- tag protons in 200–700 MeV/c range
- new Large Acceptance Detector
- Learn about the partonic structure of nucleons in SRCs recoil p

EMC-SRC tagged experiments at JLab

LAD Experimental Settings

- Beam energy 11 GeV and 6.6 GeV (calibration)
 - Beam currents ~ 1-2uA
- Target: 20 cm liquid D2
- Luminosity: 1.2×10³⁷ cm⁻² s⁻¹ per nucleon
- Standard HMS for electrons
 - Momentum: 4.4 GeV
 - Angles: 13.5°, 17° and 21.7° (calibration)
- Standard SHMS for electrons
 - Momentum: 4.4 GeV and 5.1 GeV (calibration)
 - Angles: 13.5° and 17°
- LAD detector for recoil protons
- PRAD GEMs for tracking
- Duration: 34 PAC days

Kinematic coverage

CAD drawings – Hall C+LAD

Rotated Scattering Chamber

Using existing chamber

• Chamber rotated compared to current setup placing **larger window** in position to act as the window for the LAD Detector

Scattering Chamber with current pictures

Target Ladder

- LH2
- LD2
- Empty/Dummy target for wall subtraction
- C-Multifoil (5-6) for optics
- Usual solid target for beam checkout

Modified HAPPEX cell to accommodate LAD acceptance

- 20 cm length
- 2 cm width
- 2 cm height

Fabrication by JLab target group

PRAD GEMs

2 GEMs next to scattering chamber

- <1m away from target
- Active area: 120 x 55 cm2
- Separated by 20cm
- HV modules modified to support higher rate like SBS counterpart

Holly Szumila-Vance

LAD (Hodoscope)

•CLAS TOF scintillators refurbished at ODU

- stored in ESB
- stands designed and ready for fabrication

LAD (Hodoscope) status

Laser calibration system

- tested system from BAND (HallB)
- · fibers need to be installed
- All components ordered, to be deliver in March

Florian Hauenstein

A qualitative study of all bars showed that many bars presented some issues, to be solved at the time of laser fiber installation.

Sara Ratliff

Carlos Ayerbe

Simulation

A Geant4 simulation is under development for the Hodoscope. The GEMs geometry and digitization, will be taken for the SBS simulation g4sbs

Hcana integration

SBS tracking detectors: Used a standalone base class (SBSGEMTrackerBase) instead of inheriting from THa* classes.

Most of work to be done is track finding process

CoarseProcess (Scintillator hits processed here) FineProcess (Track projection)

Coordinated with Sanghwa Park

Estimated timeline

d(e,e'p)X - Expected Results

Melnitchouk, Sargsian, Strikman, Z.Phys. A359, 99 (1997) 17

Ready to run

Holly Szumila-Vance

Florian Hauenstein

Sara Ratliff

Lucas Ehringer

Tyler Kutz

Tennessee Postdoc

Your humble server

And Axel Schmidt, Or Hen, Larry Weinstein, Eli Piasetzky, Dien Nguyen, Doug Higinbotham

LAD in some links

- Large Area/Acceptance Detector (LAD) experiment (E12-11-107) Proposal. PAC 38, Aug 2011
 - Jeopardy June 21, 2021
- Experimental Readiness Review July 29, 2020
- A. Schmidt LAD experiment in Hall C. Oct 19, 2021
- Hall C Meeting 2022 O. Hen The LAD Experiment: "In Medium Nucleon Structure Functions, SRC, and the EMC effect"
- Hall C Meeting 2022 F. Hauenstein The LAD Experiment: Status and Preparation
- Hall A/C Meeting 2023 F. Hauenstein Tagged DIS measurement with LAD

MANDATORY BACKUP SLIDES

Run plan:

6 PAC days: Commission, calibration34 PAC days: Physics runs

Condition	Scheduled work (Activities)	Total Time (PAC time)	Beam condition
Beam setup	 Sending beam to the Hall Detector checking: scintillator, TOF, GEMs, spectrometers 	2 shifts	6.6 GeV, 1uA
Low energy calibration	 Target LH2, elastic run for momentum calibration, and inclusive cross-section SHMS at 17° and 5.048 GeV HMS at 21.73° and 4.4 GeV Delta-scan for momentum 	3 shifts	6.6 GeV, 10uA
	calibration (HMS: +/- 3%, 6%,	Slide o	courtesy of D
	9%), (SHMS: -13%, -10%, -5%, 5%, 10%, 15%, 20%)		6

Condition	Scheduled work (Activities)	Total Time (PAC time)	Beam condition	
3 pass -> 5 pass	- Beam checkout	1 shift		
Multi-foil target run	 HMS to 13.5° and 4.4 GeV SHMS to 17° and 4.4 GeV Doing GEM alignment 	3 shifts	10.9 GeV 1 uA	
	 Install sieve and turn GEM off for optic calibration run 	3 shifts	10 uA	
Luminosity scan	 Move to LD2 target and run with different currents to do luminosity scan for efficiency and luminosity check 	1 shift	0.5, 0.7, 1.2, 1.5 uA	
BCM calibration	 2-3 times during run (needs other halls off) 	1 shift	0.2 – 2uA	
Physics run setting 1	 Target LD2 HMS at 13.5° and 4.4 GeV 	13 days	1 uA	
	- SHMS at 17° and 4.4 GeV	∝ E0(times	Slide courtesy o	of D. Nguye
	- Dummy runs	5% time		
			7	

Condition	Scheduled work (Activities)	Total Time (PAC time)	Beam condition			
Physics run setting 2	 Target LD2 HMS at 17° and 4.4 GeV SHMS at 17° and 4.4 GeV Dummy runs 	8 days ~ 5% time	1uA			
Physics run setting 3	 Target LD2 HMS at 17° and 4.4 GeV SHMS at 13,5° and 4.4 GeV Dummy runs 	13 days ~ 5% time	1uA			
6 PAC days: Commission, calibration 34 PAC days: Physics runs						
Cables			Slide courtesy of			
			8			

LAD objective

Measuring the in-medium neutron SF (related to EMC effect) at large momentum (SRC signature) tagging the recoil proton, offers an excellent test of the EMC-SRC hypothesis

The simplest nucleus to test is Deuterium

The Large Area Detector (LAD) Experiment was designed to investigate spectator Tagged-DIS (TDIS) involving **high-momentum nucleons** in deuterium. Its aim was to offer fresh perspectives on the overall origin of the EMC effect and, more specifically, **to assess the hypothesis** suggesting that the EMC Effect in nuclei primarily results from the modification of nucleons within short-range correlated (SRC) pairs.