Hadron Propagation and Color Transparency at 12 GeV E12-06-107

Holly Szumila-Vance On behalf of Carlos Ayerbe Gayoso & Dipangkar Dutta

> Hall C Collaboration Meeting January 2024

Outline

- Introduce color transparency (CT)
- Recent proton results
- Running next year in Hall C: pions!

Nuclear transparency

Probability knocked out proton in scattering to be deflected or absorbed.

Ratio of cross-sections for exclusive processes from nuclei and nucleons is the Transparency.

 $T_A = \frac{\sigma_A}{A \sigma_N} \underbrace{(\text{nuclear cross section})}_{\text{(free nucleon cross section)}}$

$$\sigma_A = \sigma_N A^{\alpha}$$

Transparency is momentum independent (in the strongly interacting hadronic picture)

- scattering cross section
- Glauber multiple scattering
- Correlations and Final State Interaction (FSI) effects

Vanishing of final state interactions of hadrons with nuclear medium in exclusive processes at high momentum transfer

Quantum mechanics: Hadrons fluctuate to small transverse size (squeezing, transferred momentum)

Quantum mechanics: Hadrons fluctuate to small transverse size (squeezing, transferred momentum)

Relativity:

Maintains this small size as it propagates out of the nucleus (*freezing*, transferred energy)

Quantum mechanics: Hadrons fluctuate to small transverse size (squeezing, transferred momentum)

Relativity:

Maintains this small size as it propagates out of the nucleus (*freezing*, transferred energy)

Strong force:

Experience reduced attenuation in the nucleus, color screened

Onset of CT indicates the transition to quark-gluon degrees of freedom

CT established at high energies

Coherent diffractive dissociation of 500 GeV/c pions on C and Pt

CT is connected to other physics interpretations

GPD framework requires factorization into a hard interaction with single quark and soft part (GPDs).

Color cancellation required for factorization:

- -> small size configurations
- -> at high Q², small size object moves through nucleus with no further interactions

L. Frankfurt and M. Strikman, Phys Rep. 160, 235 (1988).

CT is connected to other physics interpretations

GPD framework requires factorization into a hard interaction with single quark and soft part (GPDs).

Color cancellation required for factorization:

-> small size configurations

-> at high Q², small size object moves through nucleus with no further interactions

L. Frankfurt and M. Strikman, Phys Rep. 160, 235 (1988).

CT is implied by successful description of DIS.

Scaling at low x requires a suppression of interaction.

Onset of CT experiments

Overview of the proton CT experiment

Commissioning experiment for Hall C SHMS

8.5 PAC days of running 10cm LH2, 5% r.l. carbon

	HMS			S	e-	
	$egin{array}{c} \mathbf{Q}^2 \ (\mathbf{GeV/c}^2) \end{array}$	$ heta_{\mathbf{e}^{\prime}}^{lab}$ (deg)	$p_{\mathbf{e}}^{},$ (GeV/c)	$ heta_{\mathbf{p}}^{lab}$ (deg)	$p_{\mathbf{p}}$ (GeV/c)	
6.4 b	Ge ^V (8.0 eam 9.4 11.4 14.2	$\begin{array}{c} 45.1 \\ 23.2 \\ 28.5 \\ 39.3 \end{array}$	$2.125 \\ 5.481 \\ 4.451 \\ 2.970$	$17.1 \\ 21.6 \\ 17.8 \\ 12.8$	$5.030 \\ 5.830 \\ 6.882 \\ 8.352$	10.6 GeV beam

Recent proton experiment shows no onset up to Q²<14 GeV²...

D. Bhetuwal et al, PRL126:082301 (2021)

No CT in the shell-dependent transparencies

CT predicted to be more prominent for

1S_{1/2} protons Frankfurt, Nuclear Physics A515 (1990)

No CT in the shell-dependent transparencies

D. Bhetuwal, et al, Phys. Rev. C 108, 025203 (2023)

No CT in the asymmetry relative to \vec{q}

CT arising from Fermi motion predicted to occur when $\vec{p}_m \parallel -\vec{q}$

Jennings and Kopeliovich PRL 70 (1993) Bianconi et al, PLB 325 (1994)

No CT in the asymmetry relative to \vec{q}

CT arising from Fermi motion predicted to occur when $\vec{p}_m \parallel -\vec{q}$

Jennings and Kopeliovich PRL 70 (1993) Bianconi et al, PLB 325 (1994) Studied A_{pm} in bins of missing energy and missing momentum \rightarrow no CT-like effect observed

D. Bhetuwal, et al, Phys. Rev. C 108, 025203 (2023)

(Some) interpretations

(Some) interpretations

HLFQCD says we need higher Q²

Brodsky and de Téramond, Physics 2022

Let's talk about near-term running in Hall C

A(e,e'π⁺) 17.5 PAC days of running 11 GeV beam ¹H, ²H, ¹²C, ⁶³Cu

Q^2	W	$ heta_{e'}^{HMS}$	$E_{e'}$	$ heta_{\pi}^{SHMS}$	p_{π}	k_{π}
$(\text{GeV/c})^2$	GeV	deg	GeV	\deg	${\rm GeV/c}$	GeV
5.0	2.43	16.28	5.67	15.96	5.110	0.67
6.5	2.74	22.13	4.010	11.72	6.771	0.67
8.0	3.02	32.37	2.340	7.90	8.442	0.67
9.5	3.09	47.71	1.320	5.52	9.42	0.74

Onset for mesons observed at few GeV²

Onset for mesons observed at few GeV²

B. Clasie et al, PRL99:242502 (2007) X. Qian et al, PRC81:055209 (2010)

Previous analysis

Compare A>1 yields with H(e,e' π^+), PWIA

Evaluate Q² and A dependence

Measure the onset over a large momentum range

Hall B is extending rho-meson measurements

L. El Fassi et al, PLB 712,326 (2012) L. El Fassi, Physics 4, no. 3 (2022)

Summary

- Onset of CT is an exciting opportunity to explore the connection between hadronic and partonic degrees of freedom in nuclei
- Not observed in protons in the recent Hall C experiment
- Hall C will measure A(e,e' π^+) in 2025
 - Pion propagation in nuclear matter
 - Map onset of CT through factorization regime

Looking forward to running next year. Sign up for shifts, and join our team!

Absorption cross section is momentum independent

Tendency of $\alpha \rightarrow 2/3$ expected for opaque nucleus

NN cross section

NN cross section is essentially energy independent

pp scattering cross section

pn scattering cross section

DIS picture

Small-x picture

No interaction

Large-x picture

Interaction

Interaction

