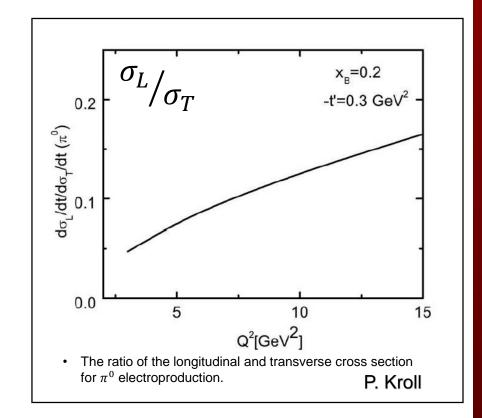


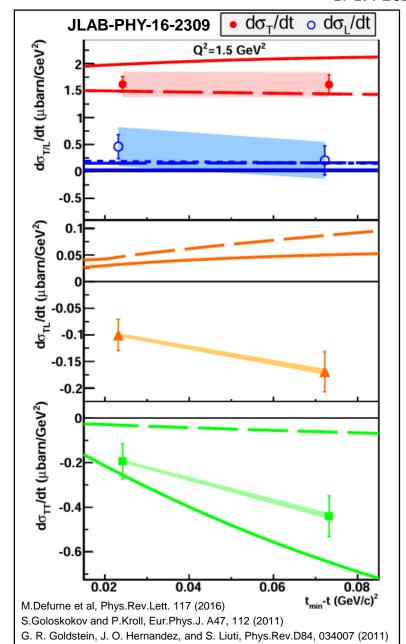
Exclusive π^0 Production Cross Section: L/T Separation

Joshua P. Crafts
The Catholic University of America

Presented to the Winter Hall C Collaboration Meeting
On behalf of the NPS Collaboration
Jan 19th, 2024



Outline

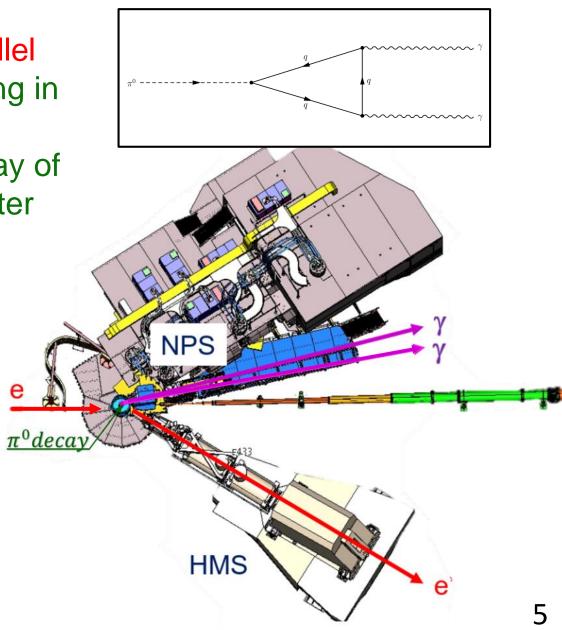

- \square Physics Motivations: Exclusive π^0
 - \circ Original Exclusive π^0 measurement in Hall A and CLAS Collaboration.
 - Handbag factorization indicate that for asymptotically large photon virtualities, the longitudinally polarized photons should dominate.
 - o It is of great interest to determine the relative longitudinal and transverse π^0 contributions to the cross section.
- □2-Photon Trigger
 - Implementation
- \Box Current status of the exclusive π^0 production with the NPS.
 - Initial Missing Mass Calculation
- $\Box \pi^0$ Asymmetry
- □ Looking Forward

DEUS MEA

Physics Motivations

- **D**Exclusive π^0
 - \circ The first cross section measurements for exclusive π^0 electroproduction in the valence region were performed in Hall A and later by CLAS.
- The 6GeV data was L/T separated but while the σ_T was measured, it was only able to provide an upper bounds on σ_L . The subsequent 12GeV data was not L/T separated.
- ☐ The data provided evidence for strong contributions from transversely polarized virtual photons.
- ☐ This observation contrasts with the handbag factorization prediction.
 - Handbag approach indicates amplitudes for transverse photons are suppressed (~1/Q) compared to longitudinal.
 - Offers areas for refinement of our understanding.

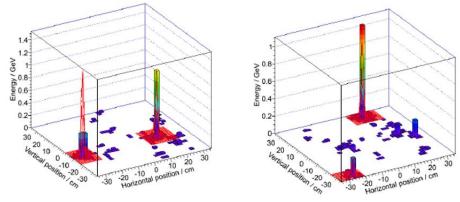
Physics Motivations Continued

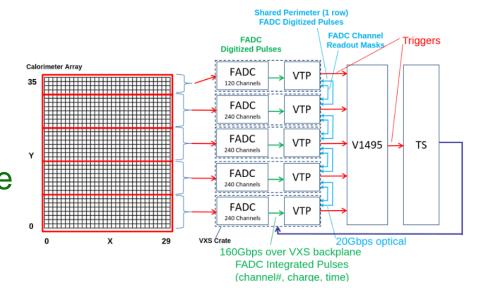


- First π^0 L/T separated data came from Hall A with experiments E07-007 off the proton and E08-025 off the neutron.
 - Now Published, JLAB-PHY-15-2038 and JLAB-PHY-16-2309
 - x_B was at 0.36, DVCS will be over a larger kinematic range
- \square E12-13-010 DVCS Experiment provides a clean probe of transversity effects and allows for measurements of the L/T separated exclusive π^0 cross section in a larger kinematic range
 - o Providing a constraint on σ_L and σ_T
 - Supported in part by NSF awards PHY2012430 and PHY2309976
- lacktriangle If σ_T is confirmed to be large this could subsequently allow for a detailed investigation of transversity GPDs
 - Also the separated longitudinal cross section could allow for probing the usual GPDs through neutral pion production.

Exclusive π^0 in parallel with DVCS

DEUX MEA

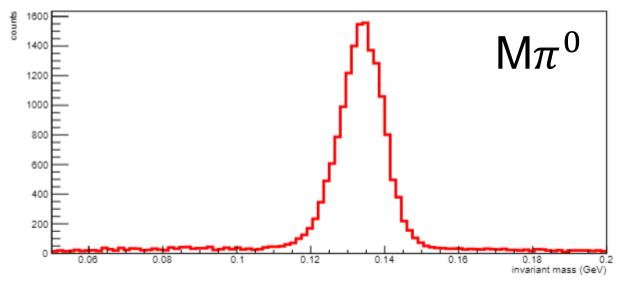

- The measurement is being done in parallel with the DVCS measurement by detecting in coincidence scattered electrons in the existing HMS and photons from the decay of π^0 using the Neutral Particle Spectrometer (NPS).
- The NPS will detect photons corresponding to π^0 electroproduction close to the direction of \vec{q} , the exchanged virtual photon three-momentum transfer.
 - Average lifetime of 8.5×10⁻¹⁷ seconds.
 - The HMS Spectrometer benefits from relatively small point-to-point uncertainties, which are crucial for meaningful L/T separations.

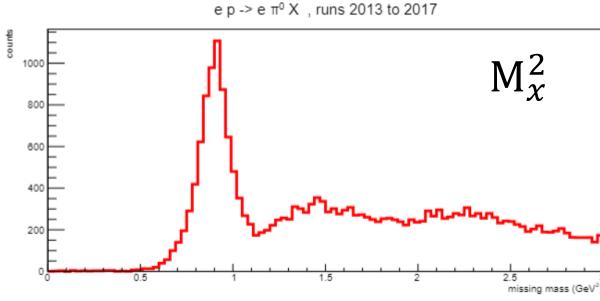

Two-Photon Trigger

DEUS MEA LUX EST

- ☐ Timing windows & Trigger Thresholds
- ☐ The trigger initializes in the NPS if there is a 70MeV seed event.
- ☐ If the event then exceeds the readout threshold, usually 800MeV for each of 2-clusters, it is included in the trigger
 - A separate FPGA module monitors the five FADC crates for the NPS as there is a high likelihood that the two photons will be in different crates.
- ☐ If the two photons are detected within a 20ns window the FPGA passes the event up into the counting house where it is combined into coincidence with the HMS in NIM logic.

Geant4/GEM simulation of hits from π° 2 γ decay along with background. From M.Carmignotto.

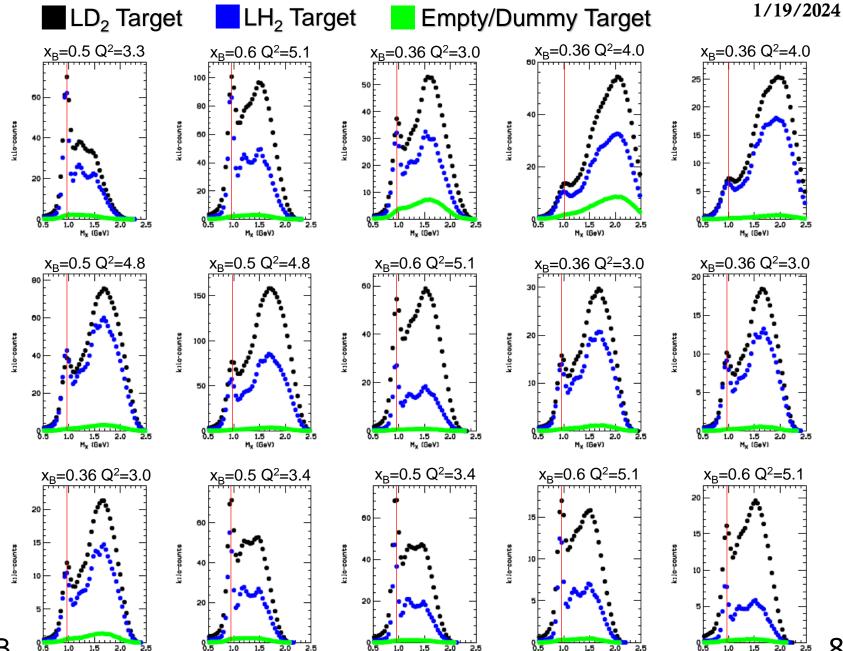



π^0 Data in the context of DVCS

1/19/2024

 $e p -> e \pi^0 X$, runs 2013 to 2017

- \Box In addition to the Exclusive π^0 physics.
- \square π^0 Data is being collected alongside the DVCS data, both being required for the DVCS physics.
- \Box The π^0 is also providing useful information for calibration of the NPS detector itself.
 - Supplemental to the elastic calibration. $\pi^0 \rightarrow \gamma \gamma$ Calibration.
 - Mentioned in previous talks today by Hao.



Missing Mass

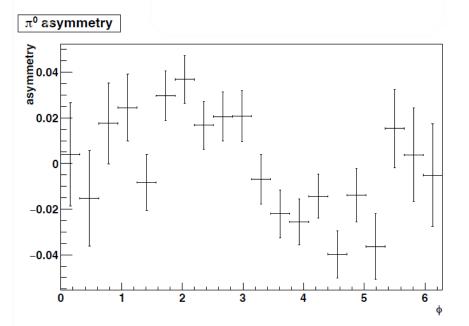
- Example of the Exclusive π^0 missing mass statistics for the different kinematics currently taken by the experiment currently.
- Three different targets were used.
 - Two cryogenic (LD₂) and LH₂) and the dummy/empty target.
- \Box The π^0 peak can be isolated and in the kinematics shown here with of multiple kilo-counts collected.

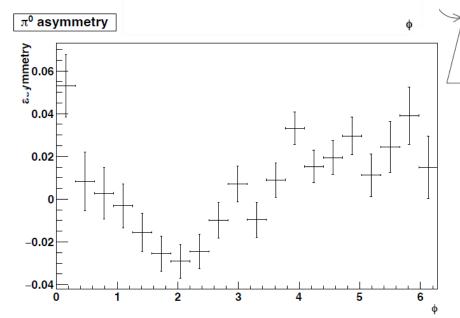
Credit to Peter B.

π^0 Asymmetry

Helicity dependent section

 $-rac{d\sigma_{LT'}}{d\Omega} \sin \phi$


$$\boldsymbol{\pi^0 \text{Cross Section:}} \ \frac{d\sigma_{\nu}}{d\Omega_f dE_f d\Omega} = \frac{d\sigma_T}{d\Omega} + \epsilon \frac{d\sigma_L}{d\Omega} + \sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{LT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{LT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{LT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{LT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{LT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{LT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} \cos 2\phi + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{TT} \cos \phi}{d\Omega} + \epsilon \frac{d\sigma_{TT}}{d\Omega} + \epsilon \frac{d\sigma_{TT$$


 π^0 Asymmetry:

$$\frac{N_+ - N_-}{N_+ + N_-}$$

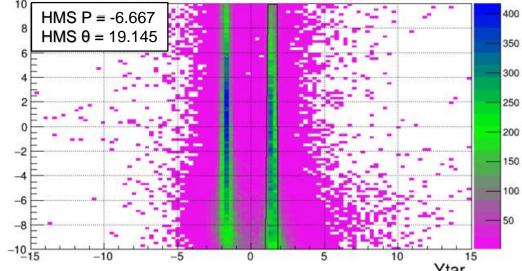
Only helicity dependent part remains

Results for half wave plate out and in:

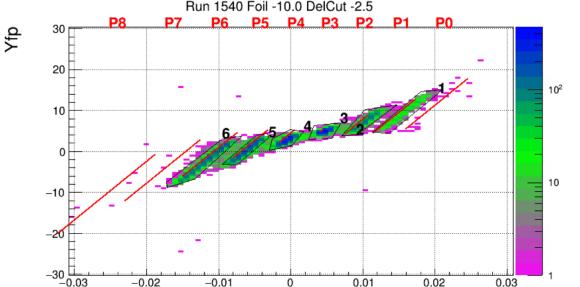
OUT 1723-1759 15 runs & 1945-1957 10 runs

IN 1820-1937 66 runs

Credit to Yaopeng Z.


- \square We see a clear asymmetry of form A sin(ϕ) and of order magnitude ~0.04
- \Box This suggests a non-zero LT ' interference among the amplitudes describing the $\gamma^*p \to p \pi^0$ reaction"

Looking Forward


- ☐ "General disclaimer"
- ☐ The data we have shown here is preliminary and is very much a first pass and there is still more data to be taken.
- Significant effort is being invested now to verify and calibrate the various detector elements as well as monitoring beam stability and quality. Analysis refinements.
 - **Target Boiling**
 - **NPS Calibration**
 - **BCM &BPM**
 - Møller Calibration
 - HMS Optics Calibration for new kinematics
- ☐ Multiple in-progress items.

Winter Hall C Collaboration Meeting 1/19/2024 Run 1540

Delta

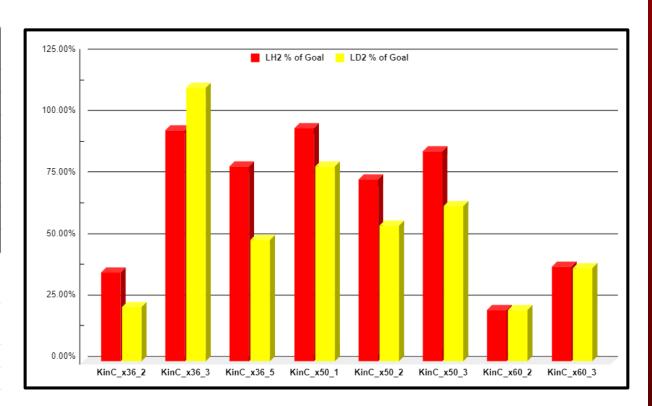
Graphical Target Position (Y-tar) -Delta cuts along 2 carbon foils cuts on the two foils at +/-8 cm

Credit to Christine P.

Graphical sieve hole cuts for the for one of the delta cuts

Summary

- ☐ The hall A experiments E07-007 and E08-025 set the stage for understanding the Exclusive π^0 L/T separation.
- □ Hall C E12-13-010 DVCS Experiment gives a probe of transversity effects and will allow for a L/T separation measurement across a larger kinematic range.
- The NPS detector in combination with the HMS spectrometer is using the two photon trigger to detect photons corresponding to π^0 electroproduction.
- \square The π^0 missing mass peak has been preliminarily identified.
- \Box The π^0 asymmetry can be seen.
- ☐ Incredible effort is being invested to complete the experiment and refine the data being taken.


Run Summary

2023 Charge Accumulation

x_Bj	Kinematic Setting	Pass	Q2 (GeV^2)	Coulomb Goal Per Target	LH2 % of Goal	LD2 % of Goal	
6	KinC_x36_3	5	3.0	0.60	94%	111%	
.36	KinC_x36_5	5	4.0	1.40	79%	49%	
0.	KinC_x36_2	4	3.0	3.30	36%	22%	
0.50	KinC_x50_2	5	3.4	3.00	74%	55%	
	KinC_x50_3	5	4.8	6.40	86%	63%	
	KinC_x50_1	4	3.4	1.90	95%	79%	
.6	KinC_x60_3	5	5.1	11.60	39%	38%	
0	KinC_x60_2	4	5.1	19.00	21%	21%	

2024 Charge Goals → May

x_Bj	Kinematic Setting	Pass	Q2 (GeV^2)	Coulomb Goal Per Target	LH2 % of Goal	LD2 % of Goal
0.25	KinC_x25_1	5	2.1	2.6		
	KinC_x25_2	5	2.4	2.6		
	KinC_x25_3	4	2.4	2.6		
	KinC_x25_4	3	3.0	2.6		
0.36	KinC_x36_6	5	5.5	4.30		
	KinC_x36_4	4	4.0	2.70		
	KinC_x36_1	3	3.0	2.30		
0.5	KinC_x50_0	3	3.4	7.90		
9	KinC_x60_4	5	6.0	19.20		
0.	KinC_x60_1	3	5.1	25.60		

☐ Our objectives are:

- Obtain a spin-dependent cross section
- \circ Extract L/T separation for π^0

Plenty of opportunities to get involved

!!TAKE SHIFTS!!

Thank you to the NPS Collaboration; Thanks to all my colleagues at JLab and elsewhere Thank you all for your time

Backup Slides

Winter Hall C Collaboration Meeting 1/19/2024

Kinematic Setting	Pass	SHMS Theta (deg)	NPS Theta (deg)	Coulomb Goal Per Target	LH2 % of Goal	LD2 % of Goal	% of Dummy to LH2	Re-summed Kinematics	LH2 % of Goal	LD2 % of Goal	Coulombs, H+D
KinC_x36_1	3			2.3							0.00
KinC_x36_2	4	30.66	14.36	1.1	29.16%	16.06%	6.60%	KinC_x36_2	36.24%	22.15%	0.50
KinC_x36_2'	4	28.76	12.46	1.1	44.78%	25.22%	7.86%				0.77
KinC_x36_2"	4	32.90	16.60	1.1	34.77%	25.17%	15.09%				0.66
KinC_x36_3	5	32.26	15.96	0.6	94.07%	111.43%	25.88%	KinC_x36_3	94.07%	111.43%	1.23
KinC_x36_4	4			2.7							0.00
KinC_x36_5	5	28.42	12.12	1.4	79.37%	49.47%	20.92%	KinC_x36_5	79.37%	49.47%	1.80
KinC_x36_6	5			4.3							0.00
KinC_x50_0	3			7.9							0.00
KinC_x50_1	4	35.29	18.99	1.9	95.06%	78.36%	9.99%	KinC_x50_1	94.95%	79.27%	3.30
KinC_x50_1'	4	33.38	17.08	1.9	94.84%	80.17%	13.38%				3.33
KinC_x50_2	5	36.88	20.58	3.00	74.23%	55.20%	16.74%	KinC_x50_2	74.23%	55.20%	3.88
KinC_x50_3	5	31.75	15.45	6.4	85.61%	63.27%	7.98%	KinC_x50_3	85.61%	63.27%	9.53
KinC_x60_1	3			25.6							0.00
KinC_x60_2	4	32.87	16.57	9.5	23.15%	21.78%	12.99%	KinC_x60_2	20.91%	20.92%	4.27
KinC_x60_2'	4	28.76	12.46	9.5	18.67%	20.05%	12.82%				3.68
KinC_x60_3	5	35.02	18.72	5.8	58.46%	50.98%	11.17%	KinC_x60_3	38.54%	37.89%	6.35
KinC_x60_3'	5	34.02	17.72	5.8	18.62%	24.80%	8.23%				2.52
KinC_x60_4	5	32.39	16.09	19.2	0.00%	0.00%	0.00%				0.00
KinC_x25_1	3			2.6							0.00
KinC_x25_2	4			2.6							0.00
KinC_x25_3	5	28.92	12.62	2.6	0.00%	0.00%	0.00%				0.00
KinC_x25_4	5			2.6							0.00
				116.6	7.29	5.97	Total Charge>				41.81
							% of Total Goal				17.93%