

Deeply Virtual Compton Scattering off the neutron with the Neutral Particle Spectrometer in Hall C

Wassim Hamdi

Faculty of Sciences of Monastir Tunisia

19 January 2024

Hall C Winter Collaboration Meeting

Outlines

- Physics Motivation
- Experimental setup
- Data Acquisition
- Preliminary Physics Plots

3D STRUCTURE OF THE NUCLEON

2

From DVCS to GPDs

Why DVCS on the neutron?

 Using the Approximate isospin symmetry of QCD we obtain the simplest way to perform a flavor decomposition of the u and d quark GPDs:

$$H^p = \frac{4}{9}H^u + \frac{1}{9}H^d$$
 $H^n = -\frac{1}{9}H^u + \frac{4}{9}H^d$

• The unpolarized "n-DVCS" cross sections at low t have a direct relevance in the determination of the quark angular momentum via Ji's sum rule:

$$J^{q} = \frac{1}{2} \int_{-1}^{1} x dx [H^{q}(x,\xi,t=0) + E^{q}(x,\xi,t=0)] \quad \forall \xi$$

Mazouz et al. Physical review letters, 99(2007), 242501

n-DVCS and d-DVCS seperation

exclusive region of the missing mass spectrum

Benali et al. Nat Phys 16 (2020) 191

1.6

 M_{ν}^2 (GeV²)

0.8

0.6

n-DVCS Kinematics

Data Taken in 2023

x_Bj	Kinematic Setting	Pass	Q2 (GeV^2)
0.36	KinC_x36_3	5	3.0
	KinC_x36_5	5	4.0
	KinC_x36_2	4	3.0
0.50	KinC_x50_2	5	3.4
	KinC_x50_3	5	4.8
	KinC_x50_1	4	3.4
0.6	KinC_x60_3	5	5.1
	KinC_x60_2	4	5.1

Data that will be taken in 2024

x_Bj	Kinematic Setting	Pass	Q2 (GeV^2)
0.25	KinC_x25_1	5	2.1
	KinC_x25_2	5	2.4
	KinC_x25_3	4	2.4
	KinC_x25_4	3	3.0
0.36	KinC_x36_6	5	5.5
	KinC_x36_4	4	4.0
	KinC_x36_1	3	3.0
0.5	KinC_x50_0	3	3.4
0.6	KinC_x60_4	5	6.0
	KinC_x60_1	3	5.1

Credits to J.Crafts

- High xbj --> high |t| --> better separation
- Different beam energies that will further give a better extraction of the different CFFs from the DVCS cross sections
- To reduce systematic uncertainties, LH2 and LD2 run periods are interleaved frequently (every few hours)

DVCS NPS/HallC/JLab 2023-2024

Sharp drop of the deuteron form factors as
 [t] increases

Experimental Setup

- The photon will be collected by the NPS lead tungsten calorimeter
- The scattered electron will be detected in the HMS
- e LD2 target HMS

• The recoil particle off the LD2 target will be identified by missing mass

HMS Detectors

Data Acquisition and electronics

- Flash Analog to Digital Converter (FADC)
- VXS Trigger Processor (VTP)

Data Stream

If sample > PEDESTAL+ Threshold ==>> HIT detected in the FADC

FADC computes the integral+ PED substraction + Gain applied ==>> Energy in MeV (13 bit) streamed to the VTP

VTP and Clusters reconstruction

• VTP BASIC STEPS:

1) If the seed Energy is above the threshold value (70 MeV) $\sqrt{}$

2) If the seed energy is a local maximum with respect to the 8 neighbors within the value of the time window (+- 20 ns from the seed) $\sqrt{}$

3) The Cluster Energy is calculated by summing up all the energies from the 9 blocks \checkmark

4) Information stored:

- The x pos (column number), y pos (row number)
- Time of the seed block
- Total energy of the 3 by 3 cluster

=> Coda file words => ROOTfile variables => Waveforms

Cluster Trigger

- Single photon cluster trigger (S.P.T):
- 1) The first Basic Steps by the VTP
- 2) The Cluster Energy Is Above The S.P.T (1400 MeV)

==>> We have a DVCS cluster in hand

- 3) Readout threshold energy (500 MeV) is applied:
 - We use the 7x7 Clustering around the seed block
 - The VTP sends the readout channels masks in the 7x7 to the FADC in order to read out the raw wavefoms of these channels

VTP Performance

HMS Single Arm Pre-Trigger

Credits to C.Yero

NPS/HMS Coincidence

14

Credits to B.Michaels, J.Poudel, B.Raydo, C. Ghosh, Y. Zhang

Preliminary Physics Plots

- Correlation between the Exclusive Pi0 missing mass squared and invariant mass on the LD2 target
- Determination of the shower centroid coordinates with the center of gravity method

$$E_{
m sh}' = \sum_i^{N_{
m clus}} E_i'.$$

$$x_c = \frac{\sum_i w_i x_i}{\sum_i w_i}$$

$$w_i = \max\left\{0; W_0 + \ln\left(\frac{E'_i}{E'_{\rm sh}}\right)\right\}$$

Very preliminary physics plots

• Missing mass squared corrected by the correlation between the missing mass squared and the invariant mass

e D -> e π⁰ Χ

Subtraction of Pi0 and accidentals

Summary

- Measurements of the cross section over a wider kinematic domain reaction off quasi-free neutrons
- Essential measurements for probing the flavor separation of GPDs
- The Neutral Particle Spectrometer and the 12 GeV kinematics will significantly improve previous results on the n-DVCS experiments
- A measurement of the exclusive $\pi 0$ electroproduction cross section off the neutron will also be measured
- Further Analysis will be conducted in the coming months to obtain the expected resolution

Thanks for everyone who contributed and still contributing to the experiment

Thank you for your attention!

Backup slides

Wigner Distributions and GPDs

General formalism for a quantum system

$$W(r,p) = \int_{-\infty}^{+\infty} dz e^{ipz} \psi^*(r-z/2) \psi(r+z/2)$$
 Wigner Distribution

Dirac

For the case of relativistic quarks and gluons

In the infinite momentum reference frame

$$F_{\Gamma}^{q}(P, x, \Delta) = \frac{P^{+}}{4\pi} \int dz^{-} e^{ixP^{+}z^{-}} < p' |\bar{\psi}(-z/2)\Gamma\psi(z/2)|p > |_{z^{+}=\vec{z}_{\perp}=0}$$

$$F_{\gamma^{+}}^{q}(x, \xi, t) = \overline{H^{q}(x, \xi, t)}\overline{U}(p')\gamma^{+}U(p) + \overline{E^{q}(x, \xi, t)}\overline{U}(p')\sigma^{+\nu}\frac{\Delta_{\nu}}{2M}U(p)$$

$$F_{\gamma^{+}\gamma^{5}}^{q}(x, \xi, t) = \overline{\tilde{H}^{q}(x, \xi, t)}\overline{U}(p')\gamma^{+}\gamma^{5}U(p) + \overline{\tilde{E}^{q}(x, \xi, t)}\overline{U}(p')\gamma^{5}\frac{\Delta^{+}}{2M}U(p)$$
Particle with S = 1/2

DVCS Cross Section

But using a polarized electron beam: Asymmetry appears in Φ

Kroll, Guichon, Diehl, Pire ...

FADC Data Stream

VTP Performance

VTP Clusters

