

Deeply Virtual Compton Scattering off the proton with the Neutral Particle Spectrometer in Hall C

Hao Huang

Carlos Munoz Camacho

Hall C Winter Meeting 2024.01.19

Outline

- Motivation and introduction
- ➤Experimental setup
- Energy calibration of Neutral Particle Spectrometer (NPS)
 - Calibration with cosmic data
 - Elastic calibration
 - π^0 calibration
- ➢Summary

 $\delta z_1 \sim 1/Q_2$

 $f(x,r_{\perp})$

Investigate the proton structure

- Nucleon Form Factors (FFs)
 - ✓ Access via elastic scattering: $e + p \rightarrow e' + p'$
 - ✓ Spatial distribution of electric charge
- Parton Distribution Functions (PDFs)
 - \checkmark Access via deep inelastic scattering: e + p \rightarrow e' + X
 - ✓ Momentum distribution of partons
- Generalized Parton Distributions (GPDs)
 - ✓ Access via exclusive processes:
 - Deeply Virtual Compton Scattering (DVCS)
 - Deeply Virtual Meson Production (DVMP)
 - Double DVCS (DDVCS)
 - etc.
 - ✓ Spatial and momentum distribution

Deeply Virtual Compton Scattering (DVCS)

➤The simplest probe to access the GPDs

 $\succ \sigma(ep \rightarrow ep\gamma) = |DVCS|^2 + |BH|^2 + interference$

- |BH|²: calculable precisely with QED
- Interference terms: separated by beam energy dependence and φ

DVCS experiment in Hall C

- The upgraded 12 GeV electron beam provides an opportunity for a new kinematic region
- The Hall C High Momentum Spectrometer (HMS) provides sufficient momentum reach to separate the interference and |DVCS|² terms using different beam energies
- Measurement with low x_B provides the cross-check with results from other experiments (CLAS, COMPASS, ...)

Experimental setup

Extraction of DVCS events

The DVCS events are extracted using missing mass technique

$$M_{x}^{2} = (k + P_{p} - k' - q_{\gamma})^{2}$$

- Energy resolution in the NPS plays a crucial role for better missing-mass resolution
- Energy calibration should be performed as well as possible

NPS calibration with cosmic rays

>Check the performance after installation, troubleshooting, etc.

- Pre-calibration before calibrating with elastic data
 - Gain matching for similar amplitudes in each block

Elastic calibration

- \geq Preparation of taking data of elastic events (e + p \rightarrow e' + p')
 - Move the NPS to 9.5-meter position (coordinate with the Techs)
 - Change the polarity to detect scattered electron (e') in the NPS and recoil proton (p') in the HMS
 - Three different angles of the NPS are required to illuminate the whole calorimeter and have enough statistics at the edge

Calculation of calibration coefficients

Precise prediction of scattered electron from the measured proton in the HMS

>Linear equations of 1080 crystals are used for the minimization:

• According to energy conservation, the energy E_i of scattered electron in event i is:

 $E_i = E_b + M_p - E_i^p$

where E_b is the beam energy, M_p is the mass of target proton, E_i^p is the energy of proton detected in the HMS

- By comparing E_i with $\Sigma_j C_j A_j^i$
 - $\circ \ \ C_j$ is the calibration coefficient of block j in the caloremeter
 - $\circ~A^i_j$ is the amplitude (deposited energy) if block j in event i we can build $\chi^2=\Sigma_i(E_i-\Sigma_jC_jA^i_j)^2$
- The calibration coefficient C_j can be calculated by minimizing the χ^2 : $\frac{\partial \chi^2}{\partial C_k} = -2C_k \Sigma_i (E_i - \Sigma_j C_j A_j^i) A_k^i = 0$

which can be witten as:

$$\Sigma_i E_i A_k^i = \Sigma_j [\Sigma_i A_j^i A_k^i] C_j$$

- Then, C_j can be calculated by inverse the matrix $[\Sigma_i A^i_j A^i_k]$ and multiply $\Sigma_i E_i A^i_k$

Elastic calibration

- Adjust the high voltage (HV) of PMTs to have 600 mV of amplitude for the photon from DVCS process
- Based on the gain curve and their calibration coefficients

Results of elastic calibration

- Good agreement of the electron energy between the prediction from HMS and the measurement in NPS after calibration
- > The measured energy resolution is still larger than the expectation ($\sim 2\%/\sqrt{E} \oplus 1\% \sim 1.2\%$) from simulation (work ongoing)

Energy calibration with $\pi^{\scriptscriptstyle 0}$

- > The energy in the NPS are shifted when taking production data
- Possible causes: fringe field effects from the magnet on PMTs, non-linear effects on the energy response of the calorimeter
- Calibration with $\pi^0 \rightarrow \gamma \gamma$ is another approach to extract the correct calibration coefficients in each crystal

- The minimization method is based on the paper "A bootstrap method for gain calibration and resolution determination of a lead-glass calorimeter" (Nuclear Instruments and Methods in Physics Research A 566 (2006) 366–374)
- > This method is used to constrain the mean of π^0 invariant mass and reduce its width based on:

$$F = \sum_{i=1}^{N_{events}} (m_i^2 - m_0^2)^2 + 2\lambda \sum_{i=1}^{N_{events}} (m_i^2 - m_0^2)$$
resolution term embody the constraint i²> = m₀²

 $m_0 = M_{\pi} = 0.1349766 \text{ GeV}$ m_i : reconstructed $M_{\gamma\gamma}$ λ: Lagrange multiplier

 \succ Iterations are required till the mean and width of π^0 are converged

Results of π^0 calibration

> Mean value of π^0 mass is stable after 3 iterations

At least 5 iterations are required to make its width stableBoth mean and width are improved after calibration

Summary

- The ongoing experiment with NPS in Hall C will provide high precision cross sections of DVCS at different values of x_B and Q² and for different beam energies.
- It will provide stringent constraints for GPDs in kinematic regions not accessible before the 12 GeV upgrade.
- The experiment success relies on the high energy resolution, and thus good calibration, of the NPS electromagnetic calorimeter
- Several methods are used and were described to best calibrate the response of the NPS crystals
- Improved energy resolution is expected by refined offline analysis currently underway

Thanks for all the people contributed to this experiment!!

Backups

Effects of temperature on elastic calibration

Thermal sensor at middle column (back 25-32)

2024/01/19

Hao Huang @ Hall C Winter Meeting

Results of calibration associated with temperature

- \rightarrow Higher temperature in the
 - calorimeter reduces the light yield of the crystals
 - ≻First 6 runs
 - Taken right after turning on the HVs
 - Non-uniform calibration coefficients due to the non- steady temperature was not steady in the calorimeter

Last 6 runs

 More uniform calibration coefficients after the temperature in the calorimeter got more steady

Conclusion

 The calorimeter should be calibrated after the temperature get more steady