Winter Hall C Collaboration Meeting

π^0 SIDIS

Precision $(e, e'\pi^0)$ cross sections at low $P_{h\perp}$ L/T Separation of SIDIS $(e, e'\pi^0)$

Casey Morean, on behalf of

Peter Bosted , Rolf Ent, Tanja Horn, Ed Kinney, Hamlet Mkrtchyan, Vardan Tadevosyan

1/18/2024

Supported in part by NSF grants PHY2012430 and PHY2309976

Bacchetta et al. JHEP 0702 (2007) 093

Exploring 3D Momentum Structure of the Nucleon

- From our experimental and theoretical understanding of partonic structure, we can move beyond the 1D momentum fraction (x_{bj}) picture of the nucleon.
- Semi-inclusive hadron electroproduction $N(e, e'\pi^0)X$
 - Sensitive to quark transverse momentum, quark flavor, and quark spin
- SIDIS is a useful process for mapping the spincorrelated 3D structure of quarks within nucleons
- SIDIS is a major part of JLab 12GeV program for accessing TMDs

SIDIS Formalism

- General expression for SIDIS, 8 leading twist structure functions, <u>18 structure functions</u> to twist-3
 - Bacchetta et al. JHEP 0702 (2007) 93
- Keeping only unpolarized target and beam polarized SIDIS structure functions up to twist-3
 - Subscripts indicate unpolarized and longitudinally polarized beam and target, respectively. dσ

 $\frac{dx \, dy \, d\psi dz \, d\phi_h dP_{\perp}^2}{e^2 x^2 + \frac{y^2}{2(1-\epsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \epsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\epsilon(1-\epsilon)} \sin \phi_h F_{LU}^{\sin \phi_h}\right\}}$ $\lambda_e: \text{ lepton helicity} \qquad \gamma = \frac{2Mx}{\rho} \qquad \epsilon = \frac{1}{1+2\frac{|q^2|^2}{\rho^2} \tan^2\left(\frac{\theta_e}{2}\right)}$

THE CATHOLIC UNIVERSITY OF AMERICA

Winter Hall C Collaboration Meeting

SIDIS Formalism - Notation

• Kinematic Quantities

 $Q^{2} = (l - l')^{2} = 4E_{e}E'_{e}\sin^{2}(\theta_{e}/2)$ $v = E_{e} - E'_{e}$ $x = Q^{2}/2Mv$ (Typical i $W^{2} = (P + q)^{2}$ $z = \frac{P \cdot P_{h}}{P \cdot q} = \frac{E_{h}}{v}$ (Fraction $p_{T}^{h} = \left| p_{h} - \left(\frac{p_{h} \cdot q}{|q|^{2}}\right)q \right|$ (Fraction

(Typical inclusive variables)

(Fraction of virtual photon energy carried by the hadron)

 $W'^2 = M_X^2 = (P + q - P_h)^2$, larger z, smaller W'

 ϕ_h : Angle between hadron and lepton planes

Bacchetta et al. JHEP 0702 (2007) 093

Transverse Momentum Dependence in SIDIS π^0 cross-section

- SIDIS cross sections depend on the transverse momentum of the hadron $P_{h\perp}$.
 - Arises from intrinsic transverse momentum (k_T) of the parton and the transverse momentum (p_T) of the fragmentation process
- Neutral pions are a good test and consistency check of flavor assumptions in extraction of TMDs with TM fragmentation
 - With a p_T and k_T dependence, a convolution is necessary to obtain $P_{h\perp}$

$$\begin{split} \frac{d^5 \sigma^{\ell p \to \ell h X}}{dx_B dQ^2 dz_h d^2 \boldsymbol{P}_T} &\simeq \sum_q e_q^2 \int d^2 \boldsymbol{k}_\perp f_q(x_B, k_\perp) \frac{2\pi\alpha^2}{x_B^2 s^2} \\ &\times \frac{\hat{s}^2 + \hat{u}^2}{Q^4} D_q^h(z_h, p_\perp), \end{split}$$

Anselmino et al. Phys. Rev. D 71, 074006 (2005)

$$< P_{h\perp}^2 > (z) = z^2 < k_t^2 > + < p_T^2 > (z)$$

Quadratic dependence on z² intrinsic transverse motion

SIDIS π^0 Advantages

- Measuring SIDIS for both the proton and neutron
- Diffractive ρ production can be a significant background for charged π -SIDIS.

 $\rho^0 \to \pi^+ + \ \pi^-$

- Not a problem for π^0 production.
- Background from SIDIS-ρ^{+/-} is still a contribution but is not expected to be large.

 $\rho^+ \to \pi^+ + \ \pi^0$

- Can verify the SIDIS- π^{o} cross-section expectation. $\sigma^{\pi^{0}} = \frac{1}{2} (\sigma^{\pi^{+}}(x, z, p_{T}) + \sigma^{\pi^{-}}(x, z, p_{T}))$
- Can get run coincident with DVCS experiments with NPS

Hafidi et al. CSV proposal: PR12-09-002

12 GeV Hall C π^0 SIDIS with HMS and NPS Phase Space

- Accessible phase space highlights, 6 GeV, 12 GeV comparison
- At a glance, not all kinematics included

12 GeV Hall C SIDIS Program – HMS+SHMS+NPS

Hall C π^0 SIDIS with HMS and NPS Phase Space

Jefferson Lab

Winter Hall C Collaboration Meeting

1/18/2024

SIDIS π^0 L-T Separation

- No one has measured $\pi^0 R_{LT}^{SIDIS}$ Expand on kinematics
 - Assumed $R_{SIDIS} = \sigma_L / \sigma_T$
- Needed to interpret any JLab SIDIS data
 - R_{SIDIS} dependence on z, hadron, $P_{h\perp}$?
- Do we understand Q^2 dependence as we approach z = 1?

ATHOLIC UNIVERSITY OF AMERICA

(e,e'π⁰) with NPS E12-13-007

φ = 270°

SIDIS π^0 Covered and Planned Kinematics

• More comprehensive overview tomorrow morning

Name	x_B	Q^2	Е	ϵ	E'	$\theta_{ m HMS}$	$ heta_{ ext{Calo}}$	$q'_{\rm Max}$	D_{Calo}	H_2	D_2
KinC-		${ m GeV^2}$	${\rm GeV}$		GeV	deg	deg	${\rm GeV}$	m	Days	
x25-1	0.24	2.10	6.397	0.470	1.734	25.13	8.68	4.63	6.0	1	1
x25-2	0.24	2.40	8.483	0.629	3.154	17.22	9.69	5.30	4.0	1	1
x25-3'	0.26	2.40	10.558	0.816	5.639	11.52	12.62	4.88	4.0	1	1
x25-4	0.25	3.00	10.558	0.663	4.163	15.01	9.37	6.36	6.0	1	1
x36-1	0.36	3.00	6.397	0.509	1.956	28.34	11.24	4.35	3.0	0.9	1.0
x36-2	0.36	3.00	8.483	0.747	4.042	17.01	14.36	4.35	3.0	0.4	0.5
x36-3	0.36	3.00	10.558	0.849	6.117	12.37	15.96	4.35	3.0	0.25	0.33
x36-4	0.36	4.00	8.483	0.515	2.562	24.77	9.89	5.83	4.0	1.0	1.0
x36-5	0.36	4.00	10.558	0.711	4.637	16.44	12.12	5.83	3.0	0.66	1.0
x36-6	0.36	5.50	10.558	0.402	2.416	26.85	7.40	8.05	4.0	1.66	2.0
x50-0	0.48	3.40	6.397	0.647	2.640	25.93	16.01	3.58	3.0	3.0	3.0
x50-1	0.48	3.40	8.483	0.818	4.726	16.75	18.98	3.58	3.0	1.5	1.5
x50-2	0.48	3.40	10.558	0.890	6.800	12.49	20.58	3.58	3.0	1.25	1.25
x50-3	0.48	4.80	10.558	0.767	5.253	16.92	15.45	5.12	3.0	2.5	2.5
x60-1	0.58	5.10	6.397	0.418	1.717	39.84	12.22	4.364	3.0	10	10
x60-2	0.58	5.10	8.483	0.697	3.803	22.93	16.57	4.364	3.0	7.5	7.5
x60-3	0.58	5.10	10.558	0.818	5.878	16.48	18.72	4.364	3.0	4.5	4.5
x60-4	0.58	6.00	10.558	0.741	5.052	19.31	16.09	5.182	3.0	7.5	7.5

Excerpt from static NPS runplan (arbitrary color scale)

Winter Hall C Collaboration Meeting

π^{o} reconstruction in the NPS

- Two-photon trigger configuration
- Gain calibration coefficients in the trigger
- Blocks undergo radiation damage over a long period of time
- Temperature dependence on light output (temperature monitoring)
- Clustering algorithm
- THEN reconstruct kinematic variables
 - Not a spectrometer, reconstructing pion location interesting
- See tomorrow's talks!

Plots courtesy of Peter Bosted

More plots hidden!

 M_{x}

Plots courtesy of Peter Bosted

1/18/2024

Winter Hall C Collaboration Meeting

12

1.5 2.0 2.5 M_x (GeV)

1.5 M_x (GeV)

2.0

1.0

1.0

Ζ

Plots courtesy of Peter Bosted

1/18/2024

Winter Hall C Collaboration Meeting

THE CATHOLIC UNIVERSITY OF AMERICA

Plots courtesy of Peter Bosted

1/18/2024

Winter Hall C Collaboration Meeting

- Continue to take high precision data on the proton and neutron
 - Upcoming beam energies and kinematic settings will allow for L-T separation
- Detector calibrations, efficiency studies with the larger NPS collaboration (see tomorrow's talks!)
- Precision measurement of SIDIS cross-sections for the pion near the virtual photon direction
- Constrain intrinsic transverse momentum of the quark
 - favored and unfavored fragmentation functions
- π^0 SIDIS insensitive to ρ^o meson production, help constrain background in π^+ and π^- SIDIS
- In combination with charge pion and kaon data, able to analyze future SIDIS experiments
- Check out the NPS talks tomorrow morning for many more details

