Measurement of the N-> \Delta Transition Form Factors

Supported by the US DOE / NP award DE-SC0016577

Hamza Atac Temple University

flip of one of the quarks (M1). (spherical S-wave proton WF -> spherical S-wave Delta WF)

- The first excited state of the proton, the Delta, can be reached through a magnetic spin

Delta (1232 MeV)

It can also be reached through a quadrupole (E2 or C2) transition from proton to delta. (The quadrupole amplitudes are associated with the existence of non-spherical components in the proton and Delta WF)

The quadrupole to dipole ratio (E2/M1 or C2/M1) is non-zero... Why?

Electric-Quadrupole to Magnetic-Dipole Ratio = EMR = E2/M1

Coulomb-Quadrupole to Magnetic-Dipole Ratio = CMR = C2/M1

Delta (1232 MeV)

It can also be reached through a quadrupole (E2 or C2) transition from proton to delta. (The quadrupole amplitudes are associated with the existence of non-spherical components in the proton and Delta WF)

Delta (1232 MeV)

It can also be reached through a quadrupole (E2 or C2) transition from proton to delta. (The quadrupole amplitudes are associated with the existence of non-spherical components in the proton and Delta WF)

The quadrupole to dipole ratio (E2/M1 or C2/M1) is non-zero... Why?

Non-central (tensor) interactions between quarks can account for some of the spherical deviation, but not all...

Delta (1232 MeV)

- It can also be reached through a quadrupole (E2 or C2) transition from proton to delta. (The quadrupole amplitudes are associated with the existence of non-spherical components in the proton and Delta WF)
 - The quadrupole to dipole ratio (E2/M1 or C2/M1) is non-zero... Why?
- The dynamics of a meson cloud are important to describe the structure of the nucleon.

Experimental Methodology

 $\sigma = J_{\Omega} \Gamma_{v} \frac{p_{cm}}{k_{cm}} \left(R_{T} + \epsilon_{L} R_{L} + \epsilon_{R} R_{TT} \cos 2\phi_{X\gamma} - v_{LT} R_{LT} \cos \phi_{X\gamma} \right)$

World data and status of TFFs

Lattice Calculations

- uncertainties comparable to experiment.
- Low Q² data will provide a precision benchmark for LQCD calculations.

• Updated LQCD calculations are in progress \rightarrow new calculations will have a physical pion mass and

Low Q² N-Δ transition form factors

• Low Q² landscape is an important region to measure:

- Mesonic cloud effects are predicted to be:
 - changing most rapidly over all Q^2
- Provides an excellent test bed for ChEFT and LQCD calculations
- Tests the predicted convergence of EMR and CMR as $Q^2 \rightarrow 0$.
- Sparsely measured region.

Low Q² N-Δ transition form factors

• Low Q² landscape is an important region to measure:

- Mesonic cloud effects are predicted to be:
 - changing most rapidly over all Q^2
- Provides an excellent test bed for ChEFT and LQCD calculations
- Tests the predicted convergence of EMR and CMR as $Q^2 \rightarrow 0$.
- Sparsely measured region.

Low Q² N-Δ transition form factors

Dominant role of mesonic d.o.f. at large distance scale:

Mesonic cloud ~ 50% of the quadrupole amplitude magnitude & 1/3 of the magnetic dipole strength

Connections to the neutron structure

O There are long-known relations between the TFFs and the neutron FFs. Pascalutsa, V. & Vanderhaeghen, M.: Phys. Rev. D 76 (2007) [Large-Nc] • Grabmayr, P. & Buchmann, A. J. : Phys. Rev. Lett. 86 (2001) [SU(6)]

JLab E12-15-001 Experiment

SHMS:

- 11-GeV Spectrometer
- Partner of existing 6-GeV HMS

MAGNETIC OPTICS:

- Point-to Point QQQD for easy calibration and wide acceptance.
- Horizontal bend magnet allows acceptance at forward angles (5.5°)

Detector Package:

- Drift Chambers
- Hodoscopes
- Cerenkovs
- Calorimeter
- All derived from existing HMS/SOS detector designs

Well-Shielded Detector Enclosure

Rigid Support Structure

- Rapid & Remote Rotation
- Provides Pointing Accuracy & Reproducibility demonstrated in HMS

• Summer 2019: July 20 - August 5

Hall C HMS and SHMS

JLab E12-15-001 Experiment

- Summer 2019: July 20 August 5
- Beam E = 4.56 GeV
- $Q^2 = 0.25 0.4 \ GeV^2$, $W = 1.232 \ GeV$

	Kinematical	$\theta_{\gamma^*\gamma}^{\circ}$	θ_e°	$P'_e(MeV/c)$	θ_p°	$P'_p(MeV/c)$	S/N	beam time	
	Setting				-	F		(days)	
	Kin Ia	155	7.97	3884.4	37.20	893.20	1.1	0.5	
	Kin Ib	155	7.97	3884.4	51.26	893.20	2.7	0.5	
	Kin IIa	140	7.97	3884.4	33.08	859.90	1	0.45	
	Kin IIb	140	7.97	3884.4	55.38	859.90	3.7	0.55	
	Kin IIIa	120	7.97	3884.4	27.85	794.68	0.9	0.45	
	Kin IIIb	120	7.97	3884.4	60.61	794.68	6.2	0.55	
Part I	Kin IVa	165	9.39	3820.5	40.85	1010.40	1.3	0.5	
	Kin IVb	165	9.39	3820.5	48.45	1010.40	2.4	0.5	
	Kin Va	155	9.39	3820.5	38.34	995.20	1	0.5	
	$\operatorname{Kin}\operatorname{Vb}$	155	9.39	3820.5	50.96	995.20	3.2	0.5	
	Kin VIa	128	9.39	3820.5	31.84	919.43	0.7	0.95	
	Kin VIb	128	9.39	3820.5	57.46	919.43	7.8	0.55	
	Kin VIIa	165	11.54	3708.6	40.81	1175.25	2.6	1.5	
Part II	Kin VIIb	165	11.54	3708.6	47.35	1175.25	5	2	
	Kin VIIIa	160	11.54	3708.6	39.73	1167.72	2.2	1.5	
	Kin VIIIb	160	11.54	3708.6	48.43	1167.72	6.3	2	
	Kin IXa	140	11.54	3708.6	35.52	1117.38	1.2	1.5	
	Kin IXb	140	11.54	3708.6	52.64	1117.38	8	2	

Kinematic	$ heta_e^{\circ}$	$P_e(GeV/c)$	$ heta_p^{ullet}$	$P_p(GeV/c)$
Elastic I	10.76	4.193	61.16	0.893
Elastic II	10.41	4.214	61.95	0.863
Elastic III	9.64	4.259	63.76	0.795

Elastic Data

π^0 Analysis

π^0 Cross Sections

• $Q^2 = 0.36 (GeV/c)^2$

In Plane

π^0 Cross Sections

M1 - Magnetic dipole amplitude C2 - Coulomb quadrupole amplitude E2 - Electric quadrupole amplitude

$N \rightarrow \Delta$ Transition Form Factors

CMR = C2/M1EMR = E2/M1

SHMS Spectrometer

Electron 7.3 to 11.6 Deg 936 to 952 MeV/c

4cm LH2 Target

23

New Experiment

Standard Hall-C equipment

- 1300 MeV electron beam
- Detect proton and electron in coincidence
- Reconstruct pion from missing mass.

Measurement Settings

Setting	SHMS θ (deg)	SHMS P (MeV/c)	HMS θ (deg)	HMS P (MeV/c)	S/N	Time (hrs)
1a			18.77	532.53	2	7
2a			25.17	527.72	2	7
3a			33.7	506.61	3.2	6
4a	7.29	952.26	42.15	469.66	4.3	5
5a			50.44	418.56	4.9	5
6a			54.47	388.38	4.9	5
7a			12.37	527.72	2.7	6
1b			22.01	547.54	1.2	6
2b			28.24	542.61	1.4	6
3b			36.52	520.95	2.5	5
4b	8.95	946.93	44.64	483.08	3.4	4
5b			52.68	430.78	3.7	4
6b			56.53	399.92	3.5	4
7ь			12.46	535.98	1.6	5
1c			24.40	562.00	1.5	9
2c			30.47	556.95	1.9	9
3c			38.52	534.79	3.5	6
4c	10.37	941.61	46.47	496.06	4.4	6
5c			54.17	442.64	4.8	6
6c			57.85	411.16	4.8	6
7c			12.69	543.24	2	6
1d			26.24	575.96	1.8	12
2d			32.16	570.80	2.5	11
3d			40.01	548.17	4.5	8
4d	11.63	936.28	47.73	508.64	5.5	8
5d			55.18	454.17	6.9	7
6d			58.71	422.13	6	8
7d			12.47	548.17	2.1	10

• Cover a Q^2 range of 0.015 to 0.055 (GeV/c)²

- 28 arm configurations
- Coverage for 9 Q² bins.
- 8 days production
- 3 days other (dummy, calibration, etc..)

Resolution	2% - 3%
Acceptance	1%
Scattering angle	0.4% - 0.6%
Beam energy	0.7% - 1.2%
Beam charge	1%
Target density	0.5%
Detector efficiencies	0.5%
Target cell background	0.5%
Target length	0.5%
Dead-time corrections	0.5%
Total	2.8% - 3.8%

- High precision in very low Q² region that is sparsely populated
 - Region where pion-cloud effects are expected to be prominent

Projected CMR and EMR measurements

Resolution	2% - 3%
Acceptance	1%
Scattering angle	0.4% - 0.6%
Beam energy	0.7% - 1.2%
Beam charge	1%
Target density	0.5%
Detector efficiencies	0.5%
Target cell background	0.5%
Target length	0.5%
Dead-time corrections	0.5%
Total	2.8% - 3.8%

Projected CMR and EMR measurements

- program (Halls A, B & C)
- CMR, EMR and M1 results were extracted from E12-15-001 Experiment at Q²=0.36 (GeV/c)²
 - High precision measurements in a region that was only accessed by CLAS
 - EMR and CMR results of CLAS are confirmed
 - Adds strong constraints to the theoretical models
 - Publication in process

• We will extend these measurements in the low Q² region:

- Test bed for ChEFT calculations
- High precision benchmark data for the Lattice QCD calculations
- New constraints and input to the theoretical models
- Insight to the mesonic-cloud dynamics within a region where they are dominant and rapidly changing
- Will test if the QCD prediction that CMR & EMR converge as $Q^2 \rightarrow 0$

Experiment was approved with A- rating by PAC50

- 11 days (8 production, 3 calibration)
- Beam energy: 1.3 GeV (flexible within +/- 0.1 GeV)
- Hall C standard SHMS and HMS setup with a 4 cm LH2 target

⊙ The N→Δ TFFs represent a central element of the nucleon dynamics & has been an important part of Jefferson Lab's experin

m	e	n	ta	a	

30

Zulkaida Akbar, Hamza Atac, Vladimir Berdnikov, Deepak Bhetuwal, Debaditya Biswas, Marie Boer, Alexandre Camsonne, Jian-Ping Chen, Eric Christy, Arthur Conover, Markus Diefenthaler, Burcu Duran, Dipangkar Dutta, Rolf Ent, <u>Dave Gaskell</u>, Carlos Ayerbe Gayoso, Ole Hansen, Florian Hauenstein, Nathan Heinrich, William Henry, Tanja Horn, Joshua Hoskins, Garth Huber, Shuo Jia, Mark Jones, Sylvester Joosten, Abishek Karki, Stephen Kay, Vijay Kumar, Ruonan Li, Xiaqing Li, Wenliang Li, Anusha Habarakada Liyanage, <u>Dave Mack</u>, <u>Simona Malace</u>, Pete Markowitz, Mike McCaughan, Hamlet Mkrtchyan, Casey Morean, Mireille Muhoza, Amrendra Narayan, Michael Paolone, Melanie Rehfuss, Brad Sawatzky, Andrew Smith, Greg Smith, Nikolaos Sparveris, Richard Trotta, Carlos Yero, Xiaochao Zheng, Jingyi Zhou <u>Run Coordinators</u> Research Faculty Graduate student Spokespersons

People

Supported by the US DOE / NP award DE-SC0016577

Thank You !

Hamza Atac Temple University

On behalf of JLAB E12-15-001 Collaboration

