Preliminary EMC results from XEM2 experiment

Abhyuday Sharda January 18th 2024

This work was supported by U.S. Department of Energy under award number: DE-SC0013615 and JSA Graduate Fellowship program

- Overview of E12-10-008
- Detector Calibrations
- Preliminary results

What is the EMC effect?

- >1000s of theory papers written
- No consensus after >40 years
- Typical nuclear binding energies are insignificant compared to energies in DIS experiments (MeV vs. GeV)
- Guided by experiments, we have hints

EMC Results from XEM2

3

Experimental Overview

- Experiment E12-10-008 performed in Hall C at JLab
- Ran simultaneously with E12-06-105 (primarily Bjorken-x>1)
- Single arm data taken in HMS
- E12-06-105 took data in SHMS

A CAD drawing of Hall C

High Momentum Spectrometer

1. Drift Chambers

• Provides tracking information

2. Heavy Gas Cerenkov

- Particle identification
- 3. Hodoscopes
 - Trigger
 - Tracking Efficiency

4. Calorimeter

Particle identification ullet

JLab Hall C standard equipment manual

CAD Drawing of the HMS detector stack

E12-10-008: Targets

- Investigates EMC effect in various light to medium nuclei
- Uses ⁴⁰Ca and ⁴⁸Ca which will provide insight into models predict a significant flavor dependence in the EMC effect.
- Will study the nuclei at low x and increased Q² than before, which will help in studying the EMC effect with greater precision
- Comparisons of nuclei which differ by just one nucleon (¹¹B-¹⁰B, ⁷Li-⁶Li, ¹²C-¹¹B) will allow to study isospin dependence

E12-10-008: Kinematic Coverage

- ~20 momentum settings for various targets
- HMS ran at high Q²
- We measured EMC effect in several light nuclei
- Light nuclei are conducive to exact theoretical calculations

3

E12-10-008: With Great Energy Comes Great Data

- Higher beam energy+ higher Q² allows us to skip the resonance region
- Can access higher x
- Can get ${}^{3}\text{He}/({}^{2}\text{H+}{}^{1}\text{H})$ without relying heavily on large isoscalar corrections
- Avoids the uncertainty associated with knowledge of the neutron structure function

Superfast Quarks

- HMS@35°
- $Q^2 \sim 17 \text{ GeV}^2/c$
- Multiquark Structures- 6 quark bag?
- Great data for testing exotic models
- SFQ data for: ²H, ⁹Be, ¹⁰B, ¹¹B, ¹²C, ⁴⁰Ca & ⁴⁸Ca!
- Stay for Zoe's talk next

The SRC Connection

• Short-Range Correlations: Pairs of nucleons with high back-to-back momenta

EMC Effect at 11 GeV

- Overview of E12-10-008
- Detector Calibration
- Preliminary results

Timing Windows and Reference Time Cuts

 Cuts made to exclude background events

HMS hA+ Good AdcTdc Diff Time PMT 5

Hodoscope Calibration

Courtesy of Cameron Cotton

Drift Chamber Calibration

EMC Results from XEM2

H.dc.1v1.dist {Ndata.H.dc.1v1.dist==1&&H.cer.npeSum>1&&H.cel.etot>0.1}

Courtesy of Cameron Cotton

14		

HMS Calorimeter Calibration

- Calorimeter calibrated by varying gain correction for blocks to keep output signals of the same size
- The calibration produces a set of gain constants. Each corresponding to a PMT.

;fDeltaMin

;-10 10 hcal_pos_gai

hcal_neg_gai

; Calibration constants for file hms_replay_cal_4402_-1.root, 763785 events processed

fDeltaM	lax fl	BetaMin	fBetaMa	ах	fLoTh	r fHiTh	nr					
0.5	1	.5 (9.86563	1	1.0314	43						
n_cor=	15.18,	6.41,	8.83,	10.45,	12.98,	12.76,	12.21,	12.22,	9.66,	16.29,	15.81,	13.
_	10.53,	12.43,	7.86,	15.26,	8.65,	5.54,	7.19,	7.79,	8.80,	12.15,	11.31,	12.
	25.29,	14.68,	19.57,	24.81,	18.33,	21.14,	26.86,	22.31,	24.10,	26.40,	19.38,	23.
	33.98,	18.51,	22.78,	19.90,	20.27,	21.05,	23.09,	19.51,	22.85,	23.78,	20.92,	22.
n_cor=	15.83,	16.03,	15.51,	12.17,	10.39,	16.17,	16.46,	21.05,	13.74,	12.15,	11.21,	12.
_	14.65,	14.03,	15.65,	14.38,	16.26,	18.98,	21.23,	18.27,	18.34,	11.49,	17.01,	13.
	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.
	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.00,	0.

HMS Calorimeter Calibration

- Saw some wiggles
- Electron not firing the particular PMT due to the threshold voltage being too high
- Is a known issue for the HMS
- Not a big problem for our data •

EMC Results from XEM2

16

HMS Calorimeter Calibration

- A single set of gain constants don't work for the whole dataset
- Not obvious why

EMC Results from XEM2

17

HMS Momentum offset

HMS Momentum offset

• Gaussian fitted

P(true)/_{0.9970} P(nominal)

Data to Simulation Comparison

- Simulation: Single-arm Monte Carlo
- Simulation agrees well with the data
- Deuterium target, -2.72 GeV@35°

- Overview of E12-10-008
- Detector Calibrations
- Preliminary results

Results from the 6 GeV era (XEM)

- Ran in Hall C@JLab in 2004
- EMC Effect and SRCs closely correlated
- This experiment will add much more data •

EMC Effect at 11 GeV

Charge Normalized Yield vs Bjorken-x

• CNY vs x at different angles

How preliminary are they?

- Only a single pass of calibrations for the detectors has been finished
- Some corrections for offset and detector efficiency are yet to be implemented
- Iteration of the cross section model is required to account for radiative corrections
- Data quality check is in progress

EMC effect- Carbon

- Only statistical uncertainties shown
- Each color represents data at a • particular central momentum

C12/LD2@20.0°

EMC effect- Boron-10

• Only statistical uncertainties shown

EMC effect- Calcium-40

• Only statistical uncertainties shown

EMC Results from XEM2

27

EMC Effect- Calcium-48

• Only statistical uncertainties shown

Comparison with existing data

• Error bars are estimated

EMC Results from XEM2

- The origin of the EMC effect is still a mystery
- E12-10-008 will provide several key results:
 - Isospin dependence •
 - Measurement in several light nuclei •
 - More data for comparison with SRCs •
 - Can get ${}^{3}\text{He}/({}^{2}\text{H}+{}^{1}\text{H})$ without relying heavily on large isoscalar corrections •
- We have some results and much more to come

Acknowledgement

Spokespeople and Senior Collaborators: John Arrington(LBL), Nadia Fomin(UTK) & Dave Gaskell(JLab)

Postdocs:

Burcu Duran(UTK) & Tyler Hague(LBL)

Graduate Students:

Cameron Cotton (UVA), Ryan Goodman(UTK), Abishek Karki* (MSU), Casey Morean* (UTK), Ramon Ogaz (UTK), Abhyuday Sharda (UTK), Sebastian Vasquez(UCR), Zoe Wolters (UNH) * = Graduated

Other Collaborators:

Miguel Arratia (UCR), Dipangkar Dutta (MSU), Shujie Li (LBL), Dien Nguyen(UTK), Nathaly Santiesteban (UNH), Xiaochao Zheng (UVA)

