
Hall C Analysis Software Containers

Anil Panta
Jan 19, 2024

Software setup from USER POV

2

Software Preservation POV

3

• Current software distribution path
• Software are installed on physical hardware with no virtualization.
• All dependencies are installed one by one.
• Each release and corresponding dependency’s release.

• Should be properly mapped.
• Results in careful evaluation

• Can we keep on doing this in future too ?
• Can a user in future would be able to use the software?
• Is the software portable to other sites/systems ?

Challenges

4

JLab current JLab very soon Future

Software Compiles
NOW in bare metal Does it? Surely NOT

NO Guarantee that the same host os will remain in future and software will work

Challenges

5

Dependency NO longer maintained,
NO backward compatibility changes.

Challenges

6

Compilation/Installation changes

Software Preservation : Why ?

7

Archiving

CODE

Software Preservation : Why ?

8

• You can check the mark for software preservation.

• One more step towards Data and Analysis Preservation (DAP).

• Required by DOE.

Analysis  
Workflow

Containerization a part of it.

Analysis Preservation

Software Preservation : Why ?

9

Portability
• No problem even if the base OS changes.
• Implies can be used in:

• Farm at experiment hall.
• JLab and other clusters/Grid.
• On your personal computers.

Software Preservation : How ?

10

• Archiving the code.
• Releases/Tags tarball in GitHub.

• Containers.
• Providing the OS, Dependency and compiled software.

• Container registry.
• Central place to access the containers.

• Automatic containers creation and deployment.

• Tutorial/Instruction Documentations.

Containers

• Standardized packaging for software:
• Code
• Dependencies
• Host OS

• Encapsulates the entire software ecosystem
• Provides Ready to use software
• Some popular containers are:

11

Containers Platform at Jlab

12

• JLab/SciComp is actively developing some 'containerization' best-
practices templates.

• Infrastructure to directly support Containerized workflows.

• Works are in progress, will have a announcement soon.

Automated Container creation

13

Note: 
dockerHUB != docker 
dockerHUB is a container image registry

• Automatic Build of docker Image using GitHub Action.
• No Human intervention needs.
• Reduced operational/maintenance cost.
• Triggers on New release.

• Release version -> docker tag

Multi platform support

14

• Same image useable in all three platform.
• No need of extra support.

External resources

15

• Will be easy too send to External compute center.
• Can utilize the CPU time beyond JLab

Hall C Analysis Software stack and dependencies

16

• HCANA is a core software.
• Some experiments have extended

libraries.
• In different repo.

• Dependencies include:
• HallA Analyzer
• EVIO
• ROOT

• Compilation needs:
• cMake
• gcc

HCANA container:

17

• All dependencies and environment variables set.
• Start on analysis.

https://hub.docker.com/repository/docker/jeffersonlab/hallc-hcana/general

https://hub.docker.com/repository/docker/jeffersonlab/hallc-hcana/general

HCANA with Experiment Extension library: NPSlib

18

• All dependencies and environment variables set.
• Start on analysis.

https://hub.docker.com/repository/docker/jeffersonlab/hallc-npslib/general

https://hub.docker.com/repository/docker/jeffersonlab/hallc-npslib/general

Getting started: Doc and Tutorial

19

• Doc for Hall A/C containers made:
• https://panta-123.github.io/hcana_container_doc/html/index.html

• Gives:
• Introduction, Using via docker/apptainer,

Example replay (farm running from terminal and using swif with apptainer image,

https://panta-123.github.io/hcana_container_doc/html/index.html

20

