
Slow Control Discussion

Bill Henry, Brad Sawatzky, Chandan Ghosh

Jefferson Lab

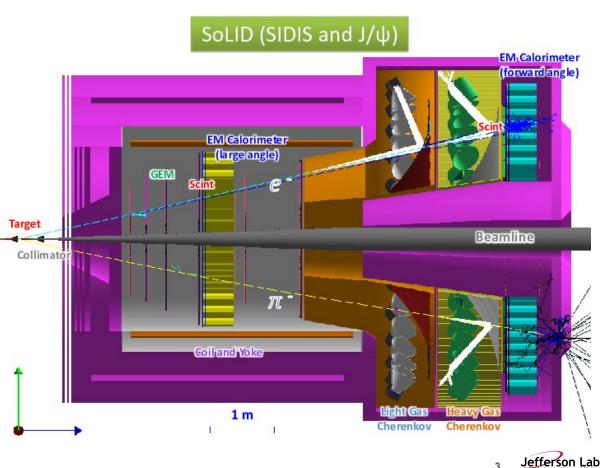
Dec 8 2023

What are Slow Controls

- "Infrastructure Support" systems and logging
 - Status monitoring of power, vacuum, temperatures, etc
 - Includes logging alarms/notifications services
 - Safety interlocks between systems (fast valve close, ramp downs HVs/LVs)
 - Remote control of motors, pumps, actuators, stepper motors, etc...
 - Typical measurement/response time on the order of 1 Hz

• User Interface

- Frontend GUIs
- Alarm systems



SoLID Subsystems

- Magnets, target
- DAQ/Detectors -
 - Power (HV, LV)
 - Crate/Chassis
- Detector subsystems
 - ECal
 - Cherenkovs
 - GEMs
 - LA/FA SPD

Slow control requirement for SoLID is significant!

3

★ DAQ Crates - should plan to purchase standard items

• Power/temperature monitoring

• Remote power cycle

★ High Voltage

• Monitoring and control

★ Low Voltage (GEM/PreAmp?)

Monitoring and control

★ Gas Systems

- Monitor flow (GEM/LGC)
- Monitor pressure and temperature (HGC) -Flow(?)

★ Fast interlocks that cross system boundary*

- Trip HV if gas flow stops on the GEMs
- Spark potections for HVs

Slow Control System Overview

Detector	HV/LV Power	LED flasher/ pulser	DAQ Crate Monitoring /Control	Gas System Type	Temp Monitoring	Flow	Pressure	Fast Interlock	Comments
GEMs	x		x	Flow Through		x		x	Define ratio
LA/FA SPD	x	?	x						
ECal	x	?	x						
Light Gas Cherenkov	X	x	x	Flow Through		x			1 atm (abs) CO ₂ , N ₂
Heavy Gas Cherenkov	x	X	x	Fill & seal	x	x (?)	x		1.5-1.7 atm (abs) C ₄ F ₁₀ (?)

FIXME: Double check and inform us

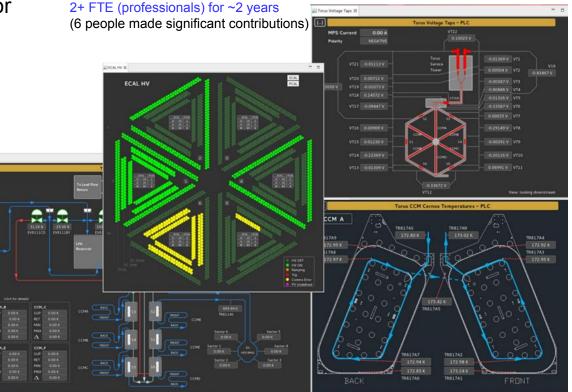
General requirements

- HV/LV controls, Temperature, Pressure GUIs with EPICS compatible logging and alarms.
 - Appropriate crate selection makes this straight forward. Recommended systems have control, monitoring and alarm loops already implemented, no IOC/PLC development needed
- LED Gain monitoring ("on/off") remote controls are straight forward
- "Flow-through"/Open-loop (need to be defined by the detector subsystem)
 - Standard MFC and other gas components can use the existing GUIs
- Heavy Gas Cherenkov gas system
 - Infrastructure (recirculating/variable pressure/ distillation gas systems) can be complex, but slow controls are minimal since fills are done manually - need to monitor T and P. Need online flow?
- Fast interlocks across systems needs to be defined clearly (trip GEM HVs if no gas, close gate-valve if there is a vacuum problem). These systems should have EPICS logging capabilities.
- Automated motion/positioning systems are more complicated -(needed?)
 - Custom IOC/PLC development, fail-safe design and interlocks

Fronted GUIs

Control Systems Studio

- Eclipsed-based toolkit designed for systems using in the lab
- Moving to Phoebus (replacing the Eclipse UI framework)


Timus Liffe System #

2

• Avoid using..

- $\circ~\mbox{LabView}$
- Custom/proprietary code
- If not possible, provide EPICS interface for integration

Hall B Slow control GUIs

7

Phoebus example - NPS HV setting.

Summary

• Even with component standards enforced, and fairly modest requirements, slow controls for project on this scale is still significant

O Hall B \rightarrow 2+ FTE (professionals) for ~2 years (6 people made significant contributions)

- Standardization and cross-system oversight is critical prior to purchase to avoid issues (CAM?)
 - O Ensure EPICS and other low level interface support is present and to spec
 - O Avoid home-built and proprietary software where possible
 - O Identify and communicate system needs that may cross subsystem boundaries
 - O EPICS will be our common API/Protocol
- Maintainable Frontend GUIs/software require sufficient time and professional software developers
 - O Control Systems Studio (CSS) / Phoebus framework is recommendation

