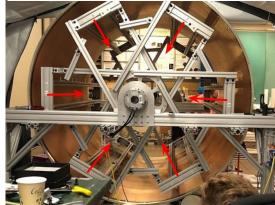
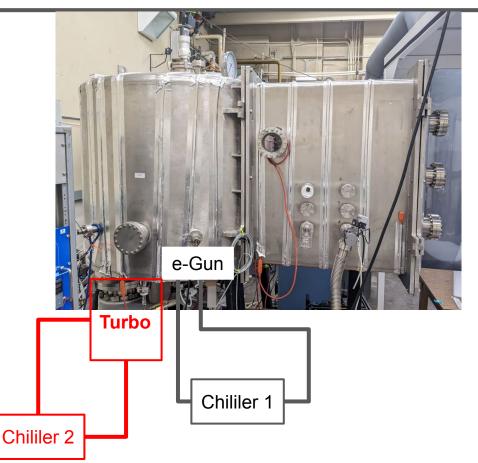
Evaporator Status and Mirror Coating Work at SBU

Wenliang Li (Bill), on behalf of SBU CFNS

Oct 19, 2023



Facility at SBU



Mandrel and vessel construction

A special gratitude to Klaus in setting up many of these facility

The Evaporator at SBU

- Where did it come from?
 - Made in INFN in 19??
 - Arrived at JLab in 199x?
 - Came to SBU in 199x?
- System consists:
 - Three pumping stages: rough (10-3 Torr), turbe (10-6 Torr), cryo (10-9 Torr)
 - Gauges
 - Electron gun
 - Thickness monitoring system
 - Rotation motor
 - Cooling system
 - •

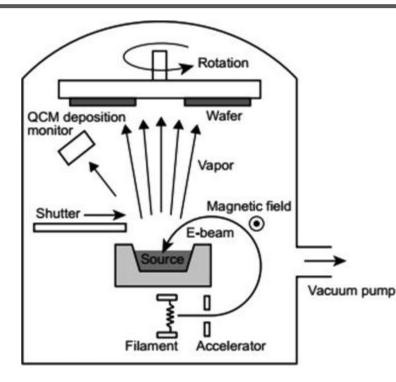
Mounting Fixture + Test Samples

Quartz Crystal Microbalance

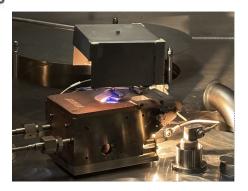
Test Carbon Fiber Sample + Tape stability

Where are we? How ready are we?

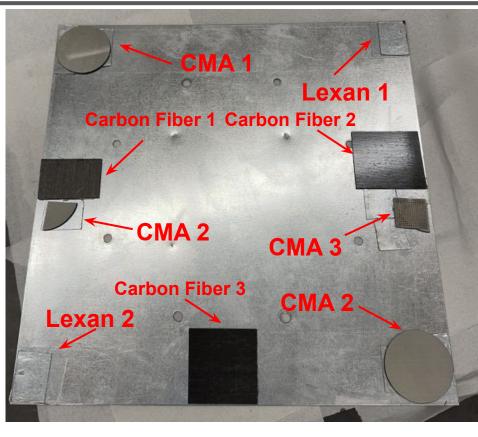
• Water cooling system Stability


- 24 hour continuous operation
- Vacuum quality
 - 3x10⁻⁶ Torr (current configuration limit)
- Tape stability
 - Stickiness and outgassing test

Rotation Motor


Continuous 1 hour operating ~ 1 rev/s

How does a evaporator work?


- Substrate mount
- Pump down (6 hours)
 - Vacuum: 10⁻⁶ Torr
- Ramp the electron gun (20 mins)
 - 6.6kV @ 100 mA
- Evaporate
 - Cr as primer base (100 nm in 10 mins)
 - Al (300 nm in 30 mins)

Coated samples from 2nd Evaporation

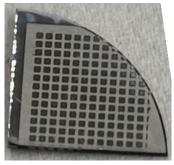
Surface roughness: 200 nm (ISO N4 polished surface)

Surface roughness: 20 nm (ISO N1 polished surface)

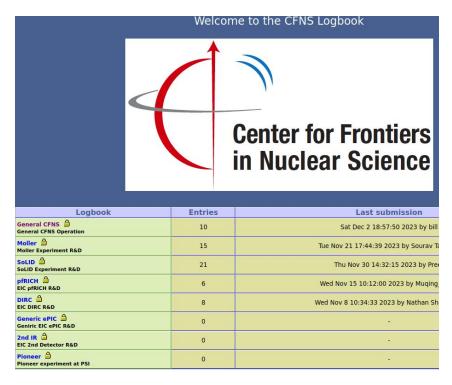
Timeline

- 2023 Summer, Preparation and equipment refurbishment
- 2023 Nov, first coating
- 2023 Dec, 2nd coating. Characterization and validate the mirror
 - Existing setup at BNL and JLab
- 2024 Jan April, coating the pfRICH mirrors
- 2024 April, Upgrade in preparation of LGC
- 2024 Oct, coating at an industrial level coating

Evaporation Condition for Different Requirement


Requirement	SoLID LGC	EIC dRICH	SoLID HGC	EIC pfRICH
Wavelength	> 180 nm	> 200 nm	> 220 nm	> 300 nm
Vacuum	10 ⁻⁹ Torr (Cryopump)		10 ⁻⁶ Torr (Turbopump)	
Material	Cr + Al + MgF ₂		Cr + Al	
Substrate heating	Yes, 300°C		Not needed	
Surface smoothing	Ionized Gun		Ionized Gun	
	Beyond current capability			

Documentation, monitoring, prediction and Q&A


• Estimating the evaporation depth

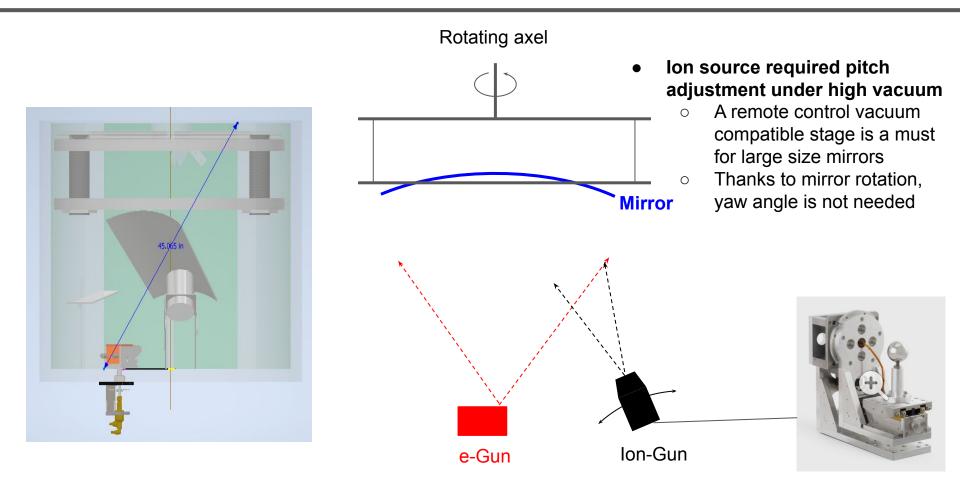
$$\Phi_e = \frac{\alpha_e N_A (P_v - P_h)}{\sqrt{2\pi MRT}}$$

• Depth measurement at SBU

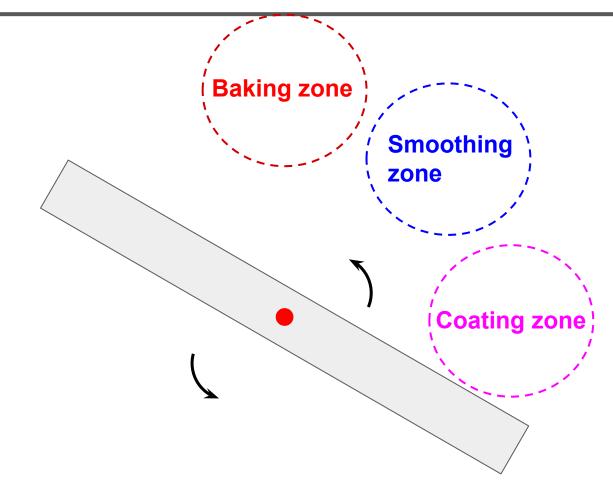
- Smooth measurement
- Documentation: a dedicated elog server
 - <u>https://elog.cfnssbu.physics.sunysb.edu</u>



Next Step from Here


- Gaining experience in coating
 - Introduce a cleaning precedure
 - Optimizing configuration and personnel training
- Gradual improvements towards MgF₂ coating
 - Cryopump repairment
 - Installing ionized Ar Gun
 - Installing the heater
 - Can the substrate take heat? How to cool down?
- Significant effort and resources needed to achieve the LGC mirror coating capability and performing coating at a industrial level

Acknowledgement


- Stony Brook team: Charles (postdoc), Jaydeep (postdoc), Kong Tu (BNL staff scientist), Preet Mann (undergraduate), Muqing Wang (undergraduate).
- Thanks to the help from sPhenix colleagues from SBU: Ross Corliss, Vassu Doomra (Ph.D. student).
- Thanks to the help from former CFNS members: Klaus and Prakhar.

A Clean Space for Staging and Mount/Dismount Mirrors

A Cartoonish view on deposition process

Sample Surface Roughness