Probing the Baryon Junction via *u*-Channel SIDIS at SoLID

Wenliang (Bill) Li, David Frenklakh, Dima Kharzeev

@ 2023 SoLID Winter Collaboration Meeting Sep/26/2023

Who carries the <u>baryon number</u>?

• Nucleon internal structure:

Question: which one is correct?

A: implies quark carries fractional baryon number

B: existence of a "Junction" like structure that potentially carries the baryon number.

Theory insights on baryon junction

Hideo Suganuma, Toru T. Takahashi, Fumiko Okiharu, Hiroko Ichie, <u>arXiv:hep-lat/0412026</u>, 2004

- The lattice results show the presence of <u>a "baryon junction" inside proton</u> a <u>purely gluonic</u> <u>field</u> configuration that represents entanglement among the quarks and <u>carries baryon number</u>!
- It has been predicted to exist on the basis of local gauge invariance of the baryon wave function (G.C. Rossi, G. Veneziano, Nuclear Physics B, Volume 123, Issue 3, 1977)
- It was also argued to dramatically affect the transport of baryon number in high energy processes (DK, 1996). <u>arXiv:nucl-th/9602027</u>

What do we measure it?

- What and where do we measure nucleon structure functions?
 - Gluon distributions: heavy-ion collisions and future EIC
 - Valence quark contribution: JLab
- Baryon junction-like-structure \rightarrow gluon distribution
 - Heavy-ion collisions!

Probing Baryon Junction with A-A at RHIC

Charge vs. baryon transport in A+A collisions:

• If Valence quarks carry electric charge & baryon number:

 $rac{Z}{ ext{Charge Stoppoing}} imes rac{ ext{Baryon Stopping}}{A} \cong 1$

• If valence quarks carry electric charge & junctions cary baryon number

$$rac{Z}{ ext{Charge Stoppoing}} imes rac{ ext{Baryon Stopping}}{A} > 1$$

Tommy Tsang (KSU) for STAR, APS GHP 2023

Theory: Quark Models: equal or less baryon compared to electric charge

Data: More baryon transported to central rapidity than electric charge

Probing **Baryon Junction** direction via Exclusive u-Channel Processes?

A: implies quark carries fractional baryon number

B: a "Junction" like structure

- How do we probe this in JLab 12 GeV?
 - May be. If manage to force the transfer of baryon number in the target and recoil particles, then Yes.

Gifted Backward-angle Observables

• Fpi-2 (E01-004) 2003

FREE!

- Spokesperson: Garth Huber, Henk Blok
- Standard HMS and SOS (e) configuration
- Electric form factor of charged π through exclusive π production
- Primary reaction for Fpi-2
 - ∘ H(e, e' π⁺)n
- In addition, the experiment fortuitously received
 - p(e,e' p)ω
- Kinematics coverage
 - $W= 2.21 \text{ GeV}, Q^2=1.6 \text{ and } 2.45 \text{ GeV}^2$
 - Two ϵ settings for each Q^2

t-Channel π ⁺ vs u-Channel ω Electroproduction

• Primary reaction for Fpi-2

- H(e, e' π⁺)n
- n (940 MeV)
- \circ π^+ (140 MeV)

• Unexpected reaction:

- Η(e,e' p)ω
- p (940 MeV)
- ο *ω* (783 MeV)

Mark Strikman & Christian Weiss: A proton being knocked out of a proton process

Two Key Discoveries from Fpi-2 ω Analysis

Question: Are there u-channel peaks for other processes? Yes!

E12-20-007 Backward-angle 1 H(*e*,*e*'*p*) π^{0}

 π^0

e

- Q² coverage: 2.0 < Q² < 6.25 GeV², at x=0.36 and W > 2 GeV L/T separated cross section @ Q²= 2, 3, 4 and 5 GeV².
- *u* coverage: 0 < -*u*' +0.5 < 0.5 GeV²
- Additional W scaling check @ Q² = 2 GeV²
- Additional Q^2 scaling check (a) $Q^2 = 6.25 \text{ GeV}^2$

GPD and TDA (Hard Structure Approach)

Description to the unseen side of proton

Complete description of Nucleon

- GPD: It is extracted predominantly based in the forward angle observables.
- **TDA**: meson-nucleon Transition Distribution Amplitude (TDA) only accessible through backward (*u*-channel) meson production.

u-Channel Exclusive Electroproduction

Large community interests, will be developed into proposal in the upcoming years

Inclusive or Semi-inclusive u-Channel processes?

Interaction: e + H→e' + B + X
o e(H, e'B)X

• B: Leading baryon

- Candidates: p, n, Λ , Σ
- Small Mandelstam variable -*u*
- Fix target: Maximum momentum gain
- Collider: Maximum momentum loss

Semi-Inclusive u-Channel study Cases?

D. Frenklakh, Dmitri Kharzeev, https://indico.cern.ch/event/1139 644/contributions/5490519/

Probing u-Channel Inclusive processes during JLab 12 GeV

SoLID experiment is ideal venue to study the u-Channel inclusive processes !

Experimental condition:

- Q² ~ 1 GeV²
- High luminosity
- LH2 target
- Detecting baryon with large forward momentum: p, n, Λ, Σ
- Semi-inclusive DIS

Conclusion: SoLID is an ideal venue for such measurement!

Probing u-Channel Inclusive processes during JLab 12 GeV

SoLID experiment is ideal venue to study the u-Channel inclusive processes !

• Publication and SoLID run group proposal will soon follow

Experimental observable:

- Detecting baryon with large forward momentum: p, n, Λ , Σ
 - Differential cross section as function of rapidity (or -t)
 - Multiplicity
 - Fit data to the specific various Regge trajectories

Conclusively Demonstrate the Baryon Junction Structure

 The JLab and EIC data are equally critical to test the hyposased x_B

Plan and Summary

- *u*-Channel inclusive DIS processes can be linked to uncover the <u>baryon number mystery</u>
- Developing u-Channel SIDIS into a SoLID run-group proposal
 - Looking into how to proton/baryon PID
 - Time of light
 - Tracking/flight path
 - Calorimeter
 - Simulation needed?

u-Channel Meson Production Setup at EIC

10 9

Electron Momentum vs Theta (L=10 fb⁻¹)

u-Channel studies at EIC

7.4 Understanding Hadronization

There is great potential also in studying **new particle production mechanisms** such as exclusive backward *u*-channel production. Given its high luminosity the EIC may be able to discover fundamental QCD particle production processes with low cross sections such as via hard (perturbative) *C*-odd three gluon exchange.

Backward π^{θ} program for EIC

- Recent u-Channel EIC publication:
 - Backward-angle (u-Channel) production at an electron-ion collider, D. Cebra, Z. Sweger, S. Klein, et. al., <u>PhysRevC.106.015204</u>
 - Modeling Backward-Angle (u-channel) Virtual Compton Scattering at an Electron-Ion Collider, Z. Sweger, S. Klein, et. al., <u>https://arxiv.org/abs/2308.10478</u>

Probing <u>Baryon Junction</u> with A-A at RHIC

- Use Isobar collision data:
 - Ru+Ru: A = 96, Z = 44
 - Zr+Zr: A = 96, Z = 40
- Definition of baryon stopping and charge difference in midrapidity

$$egin{array}{rcl} & & B = ig(N_p - N_{\overline{p}}ig) + ig(N_n - N_{\overline{n}}ig) \ & & Q = ig(N_{\pi^+} + N_{K^+} + N_pig) - ig(N_{\pi^-} + N_{K^-} + N_{\overline{p}}ig) \ & & \Delta Q \, = \, Q_{ ext{Ru}} - Q_{ ext{Zr}} ext{ and } \Delta Z \, = \, Z_{ ext{Ru}} - Z_{ ext{Zr}} \end{array}$$

- Measure $B/\Delta Q$
- Calculate $\Delta Z/A$

- If baryon number carried by:
 - Valence quarks B/Q = A/Z
 - Baryon junctions B/Q > A/Z

u-Channel Beam Spin Asymmetry (CLAS 6 measurement)

$$BSA_{i} = \frac{1}{P_{e}} \cdot \frac{N_{i}^{+} - N_{i}^{-}}{N_{i}^{+} + N_{i}^{-}}$$
$$A_{LU}^{\sin\phi} = \frac{\sqrt{2\epsilon(1-\epsilon)} \sigma_{LT'}}{\sigma_{T} + \epsilon \sigma_{L}}$$

u-Channel Beam Spin Asymmetry (S. Diehl, Kyungseon Joo, et. al):

- Longitudinally polarized e beam on a unpolarized target
- Average e polarization was 75%
- Result indicating a sudden change of sig for $\sigma_{i,\tau}$ indication sudden change of production mechanism
- Similar study at 12 GeV will be done for 1 $\rho/\omega, \phi$

Potential observable to map out the transition in production mechanism

