

Detector Development for SoLID from Chinese Collaborators

Zhihong Ye

On behalf of Shandong Univ., Tsinghua Univ. and USTC

SoLID Collaboration Meeting, 12/08/2023

SoLID Detectors

Multi-gap Resistive Plate Chamber (MRPC)

General Princple

Primary ionization

Avalanche

Electronics

Charged particle

Signal to the stripes

- Good performances: time resolution, efficiency, rate capacity (>30kHz/cm²), radiation-hard, magnet safe
- □ Certain spatial resolution (by strip pitch)

□ Low cost, easy manufacturing, large sensitive area (up to 1.0mx0.5m)

Used by ALICE, STAR, etc.

Tsinghua's new Sealed MRPC (sMRPC)

- \Box Gen3 MRPC with sealed gas \rightarrow No more boxes!
- $\hfill\square$ More compact, less radiation length
- □ Reduce greenhouse gas emmission (20cc/cm²/min)

Y. Wang et al 2019 JINST 14 C06015

Tsinghua's Miyun workshop: mass production of sMRPC

Tsinghua's Sealed MRPC (sMRPC)

□ Most recent tests: cosmic ray with x-ray background

- $\checkmark\,$ 32-gaps (4 stacks), 400um thin glasses
- ✓ 104um gas-gap + waveform-sampling → 20ps & 95%
 efficiency at 15kHz
 Y. Yu et al 2020 JINST 15 C01049
- ✓ 128um gas-gap + ToT method \rightarrow 20ps at 15kHz

Y. Yu et al 2022 JINST 17 P02005

Not proven in real beam!

MRPC

□ ePIC chose AC-LGAD as the TOF

- Goals: Time resolution~25ps, Tracking resolution ~100 um
- MRPC vs.AC-LGAD:
 - \circ thick (10% X₀), less position precision
 - \circ Cost effective, radiation hard, no risk

Development of High Precision and Eco-friendly MRPC TOF Detector for EIC

Alexandre Camsonne¹, Sanghwa Park¹, Yi Wang², Zhenyu Ye*³, and Zhihong Ye^{†2}

¹Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA ²Department of Physics, Tsinghua University, Beijing 100084, China ³Department of Physics, University of Illinois at Chicago, Chicago 60607, USA

Submission date: July 14th 2023

Generic R&D for EIC (#14, awarded \$80K for 2024):

- Possible for part of Detector#1 TOF, & Detector#2
- Optimize thickness and position precision
- Eco-friendly gas
- In-beam performance
- Readout electornics (synergic to AC-LGAD)

>R&D Task#I: Eco-Friendly Gas Replacement

- □ Possible replacements of standard gas:
 - ✓ C2H2F4 (R1234ze) + CO2
 - ✓ Argonne + CO2
 - ✓ Helium

Cons:

- Expensive (C2H2F4)
- Impact to other detectors (Helium)
- Need ultra-high HV

To-dos:

- Simulation with more gas mixtures
- Cosmic-Ray test with diff. gases (Tsinghua & UIC)
- Beam test for actual performance

R&D Task#2: Readout Electronics

- □ 4 low-rate sMRPC at UIC (unfinished Fermi-Lab beam test)
- 2 high-rate sMRPC built at Tsinghua
- □ <u>Goals:</u> Test out front-end electronics options
- PreAmp + DIS
 - NINO (discontinued)
 - pico2023 (*NEW*)
- - FPGA base (not rad. dard)
 - picoTDC (*NEW*)
- □ Waveform Sampler
 - DSR4 (slow)
 - SAMPIC
 - NALU AARDVARC

≻R&D Task#3: In-Beam p	performance
------------------------	-------------

Goals:

- Study performance of replacement gases
- Study timing performance with high-energy beam & high-rate background

MRPC

Radiation torrelance for modules and electronics

□ <u>To-dos:</u>

- UIC local test with cosmic-ray + xray background
 - 2 planes of 16-layer sMRPC + SAMPIC & NALU
- Tsinghua's local test with cosmic-ray + x-ray background

2 planes of 32-layer sMRPC + USTC FEE

- + DT5742 (DSR4) + pico2023 + DT5202 (picoTDC)
- Jlab beam test

2(+2) planes of 16-layer sMRPC + SAMPIC & NALU

Parameter	Value
Dimension	$360\times 338\ mm^2$
Height	26 mm
Weight	3.3 kg
Glass dimension	$330\times 276\ mm^2$
Gas gap number	2×4
Gas gap width	0.25 mm
Strip pitch	7 + 3 mm
Strip length	270 mm
Strip number	32

Wang's lab for Gas study

Ye's lab for FEE study

Part

scintillator

WLS fiber

outside surface

fiber end reflector

lead

> Shashlyk ECal Material Overview:

ESR with air coupling

optical reflective glue

Tyvek

*instead of reflective layer between lead

Type/Material

KEDI enhanced

YII multi-cladding

TiO2

ESR film

paint TiO2*

Wavelength-Shifting Fiber

ECAL

> Shashlyk ECal Assembly (by Shandong):

Scintillator tiles and leads are cross stacked in the mold, keeping pressure for one day.

Assembled module

Inserts fibers

fiber end after polished

cover plate above ESR

fiber polished with CNC milling machine

fiber end after polished

ECAL

>Shashlyk ECal Assembly (by Shandong):

The fiber coupling test is ongoing. The new adapter design is easy for assembling, still under study to improve the quality.

ECAL

>Shashlyk ECal Assembly (by Shandong): :

□ Irradiation resistance test at IMP

	Sample I	Sample 2	Sample 3	Sample 4	Sample 5
Total Irradiation(MeV/cm^2) by simulation (uncertainty 10%)	8.6E+11	1.4E+12	2.8E+12	3.7E+13	1.1E+14 (Not tested)
Test material	clear fiber	clear fiber BCF91A-MC scintillator	clear fiber BCF91A-MC scintillator	clear fiber BCF91A-MC scintillator	BCF91A- MC scintillator

□ Satisfy radiation resistance requirement

13.6

> Shashlyk Supermodules:

Goals:

- $\checkmark\,$ Performance of a full shower development
- ✓ Photo-sensor options (clear fiber+MaPMT, or MCP)
- $\checkmark\,$ Assembly process, deformation, quality-check, and calibration, etc.
- $\checkmark\,$ Optimizing supporting structure design (by ANL)
- ✓ Slow control development (HV, LED, ...)
- \checkmark In-beam performance (moving to Tsinghua now, then to Jlab in 2024)

• Only one out of 7 modules has a signal, indicating nearly vertical incidence

□ NPE & Resolution Resolution = sigma/mpv

ch4 NPE

ch1 NPE

□ Time Performance

over-threshold time histogram example

MPGD

> Micromegas & uRWELL R&D by USTC

□ USTC is moving away from GEM technology

Micromegas in a Bulk

Thermal bonding processing

- No etching, no pollution ٠
- Easy to handle at lab •
- Easy to make new structures ٠
- Low cost ٠
- Φ 0.5mm- Φ 1mm spacers, ~1cm pitch •
 - \rightarrow easy to clean for large area
 - \rightarrow less than 1% spacer area
- Thermal bonding method (TBM) for Micromegas detectors: concise and etching-free mass-productive process
- A complete set of equipment, mature fabricating process, mass production capability for m² size micromegas

86.37 / 64

 -1.84 ± 1.49

 39.42 ± 1.85

 33.11 ± 5.92

MPGD

two orthogonal layers of

strips were set in the inner

layer of the readout PCB

> Micromegas & uRWELL R&D by USTC

□ USTC is exploring high rate & spatial-resolution uRWELL technology

- Compact structure: 50 100 um avalanche structure tightly attached on the PCB
- $< 100 \,\mu m$ spatial resolution •
- ~M Hz/cm2 rate capability
- X-Y 2D readout design
- Promising to make a large area •

Gas gain

480

Mean

Std Dev

 γ^2 / ndf

Prob

Constant

Mean

Sigma

0

500 520

16946 -0.009714

0.07599

261.1/39

1.162e-34

 990.7 ± 10.4

-0.01181±0.00052

 0.06606 ± 0.00047

0.5 1 Bias X(mm)

Voltage (V)

urwellX bias

460

Beam Tests

> Shanghai Advanced Research Institute (SARI):

Shanghai High Repetition Rate X-ray FEL and Extreme Light Facility (SHINE) (8 GeV, 10 exp. Stations, operation in 2024)

Beam Tests

> Soft X-Ray FEL (SXFEL):

- □ 1.5 GeV electron (10Hz, 500pC/p, 2ps-width)
- □ Summer 2023 Test:
 - ✓ 4 scintillators as trigger, see electron signals in ECal (W-power) → saw huge "overflow" signals!

Beam-Viewer

✓ Detectors in the tunnel (not easily accesible)

Spring 2024: SoLID ECal+Trackers+MRPC

Aim for a dedicated experimental station (need beamline modification)

Beam Tests

>Jefferson Lab:

□ Move 2 low-rate MRPC from UIC to Jlab; Ship 2 high-rate MRPC from Tsinghua to Jlab;

- Develop test stand (gas circulation system, FEE, DAQ)
- In-beam time resolution & efficiencies with different FEE (Hall-A or Hall-C?)
- Radiation hardness of MRPC and FEE
- Used in Hall-C Hypernuclear experiment (sMRPC+pico2023+picoTDC)?

□ ECAL supermodule from Tsinghua to Jlab

- Energy resolution of a full shower (Hall-D beam?)
- Mounting and Supporting (need local engineer support)
- Photo-sensors and FEE in magnetic field (200G ~ 1.5T)
- Radiation hardness of modules and long clear-fibers

Under discussion: beam test of USTC's micromegas & uRwell w/ optimized design (flexible PCB backplane)

Two micromegas (20x20cm²) to be installed at Tsinghua

□ MRPC by Tsinghua aims for improving TOF down to 30ps

- 4 modules at UIC & Jlab; 2 high-rate modules at Tsinghua
- Exploring FEE options
- Support from EIC R&D funding
- Shashlyk ECal by Shandong and Tsinghua
 - A super-module with 7 modules has been assembled (+2 spares)
 - Exploring photo-sensor options
 - Developing calibration method, slow control
 - Synergic w/ EIC? Apply 2024 EIC R&D Funding?

□ **MPGD** by USTC

- Moving away from GEM; Mass production capability for micromegas; R&D on uRWELL
- 2 micromegas moduels at Tsinghua for MRPC and ECal testing;
- □ Shanghai SARI e-beams at 1.5 GeV (SXFEL) and future 8 GeV (SHINE) → dedicated e-beam station?
- □ Beam tests at Jlab (MRPC, ECAL, MPGD) \rightarrow Local support needed!
- How to move forward with formal US-China collaboration on SoLID?

BACKUP

大字物理系

GeV electron beam at SHINE

- Total Length: 3.1km
- 29m Underground
- 5 Shafts Down
- Over I0B RMB

- e, 8GeV, Frq=1MHz
- FEL: 0.4—25keV
- Pulse width: I --- I Ofs
- 3 X-ray beamlines
- I0 exp stations

GeV electron beam at SHINE

	Nominal	Range	FEL Line	Nominal	Objective
Beam energy/GeV	8.0	4-8.6	FEL-I		
Bunch charge/pC	100	10-300	Photon energy/keV	3-15	3-15
Max rep-rate/MHz	1	up to 1	Photon number per pulse @12.4keV	>10 ¹⁰	>1011
Beam power/MW	0.8	0 - 2.4	Max pulse repetition rate/MHz	0.66	1
Photon energy/keV	0.4-25	0.4-25	FEL-II		
Pulse length/fs	20-50	5-200	Photon energy/keV	0.4-3	0.4-3
Peak brightness	5×10^{32}	1×10^{31} - 1×10^{33}	Photon number per pulse @1.24keV	>10 ¹²	>1013
Average brightness	5×10^{25}	1×10^{23} - 1×10^{26}	Max pulse repetition rate/MHz	0.66	1
Total facility length/km	3.1	3.1	FEL-III		
Tunnel diameter/m	5.9	5.9	Photon energy/keV	10-25	10-25
2K Cryogenic power/kW	12	12	Photon number per pulse @15keV	>109	>10 ¹⁰
RF Power/MW	2.28	3.6	Max pulse repetition rate/MHz	0.66	1

著大学物理系

HUA UNIVERSITY DEPARTMENT OF PHYSICS

GeV electron beam at SHINE

Civil Construction

1. Shaft #1, 2. Shaft #2
 3. Shaft #3, 4. Shaft #4
 5. Shaft #5, 6. Linac Tunnel
 7. Target Chamber in #5-B5

大掌物理系

UA UNIVERSITY DEPARTMENT OF PHYSICS

12/08/2023

GeV electron beam at SHINE

Till March 2023, ten tunnels between shaft No#1to No#5 have been all constructed.

Tunnel between Shaft No#1and No#2 Ea

Easten tunnel between Shaft No#3 and No#4

- Non-circular structure of shafts
- 5 shafts have been constructed
- Shafts No.#1 to #3 adopted opposite braces and diagonal braces
- Shaft No. #4 & #5 adopted opposite braces and side braces, 9 or 10 supporting beams are used along the depth of the foundation pits.

Tsinghua's Sealed MRPC (sMRPC)

□ Tunable performance of Gen3 sMRPC

- $\checkmark\,$ Gaps, layers and HVs can be optimized for different needs
- ✓ BEST: 32-layers, 400um glass, 128um gap, 12kV

Time Correction

≻ToT Method vs. Sampling

□ ToT Method:

- ✓ Fixed threshold by DIS
- ✓ Use ADC for walk-correction
- ✓ Fewer requirements on front-ends
- ✓ Affected by signal amplitude

□ Sampling Method:

- ✓ Capture waveform of raise-edge
- ✓ Need fast sampling front-ends
- \checkmark Good for high-precision timing
- ✓ Good for large noise and varying amplitudes

≻Tsinghua's Sealed MRPC (sMRPC)

□ Parameters of Gen3 sMRPC (32-layers, 400um glass, 128um gap)

MRPC Module	L x W x T (mm)
Honeycoumb Board(x2)	265 x 90 x 7.5
Outer PCB (x2)	298x120x0.6
Inner PCB (x2)	298x120x1.2
Center PCB (x1)	328x120x1.2
Readout Strip (on PCB)	268x5(8 line, 2mm gap)
Mylar film (x2*4)	268x90x0.25
Carbon Electrode (x2*4)	250x72x0.005
Resistive Glass (x9*4)	258x80x0.4
Gas Layer (x8*4)	0.128
Active Area	258 x 80
Total Size	$328 \times 120 \times 40.3 (0.1 X_0)$

Pulse signal before PreAMP: 2mV (integrated charge ~ 4pC)

□ 4 mRPC at UIC and 2 new ones at Tsinghua

Parameter	Value
Dimension	$360\times 338\ mm^2$
Height	26 mm
Weight	3.3 kg
Glass dimension	$330\times276\ mm^2$
Gas gap number	2 × 4
Gas gap width	0.25 mm
Strip pitch	7 + 3 mm
Strip length	270 mm
Strip number	32

Hadron Endcap mRPC-TOF

Endcap TOF consists of 16 modules and each module consists of 3 sealed MRPC.

Figure 1.3 Arrangement of MRPCs inside the box in the End-cap.

32/22

F.Wang, JINST, 13(09):P09007, 2018.

Deliveries#3

> Time-Correction with Machine-Learning

□ ToT method is limited by pulse height, noise, and TDC resolution

□ Limited improvement by offline time-walk correction (w/ ADC info)

□ Waveform Sampling → higher precision

✓ Further improvement w/ ComLSTM neural network model

F. Wang, JINST, 14(07):C07006, 2019

To dos:

- ✓ Use modern machine-learning tools
- ✓ Train with new simulation data
- ✓ Check with beam-test data