Update of SoLID Beam Test and ECal Status

Michael Nycz (University of Virginia)

SoLID Collaboration Meeting December 2023

Xinzhan Bai, Alexandre Camsonne, Jimmy Caylor, Carter Hedinger, Tim Holmstrom, Simona Malace, Spencer Opatrny, Ye Tian, Darren Upton, Jixie Zhang, Xiaochao Zheng

SoLID Director's Review (2021)

- Calorimeter and SPD detectors not tested under high background / high luminosity environment
- Detector test utilizing a full set of SoLID prototype detectors under "realistic SoLID running condition"

<u>Goals</u>

- 1. Ensuring scintillators and ECal can trigger at high rates
- 2. Particle Identification
- 3. Identifying MIP signals in ECal above background
- 4. Ensuring GEMs work properly and can find tracks
- 5. Comparison with and benchmark of the SoLID simulation

Outline of Beam Test

Detector System

- 4 10x10 cm GEMs (UVa)
- Gas Cherenkov (Temple)
- LASPD
- 3 Scintillators upstream of Ecal
- 3 Preshower modules (UVa)
- 3 (shashlyk) shower modules (UVa)
- 1 Scintillator after shower

Detector layout

18°: High Rate Setting

- February March 2022 (~ 30 days)
- Data collected continuously during experimental running
- Data summary
 - Beam Current
 - High current: 40 65 μA
 - Low current: 10 μA (Boiling study)
 - Dedicated: 5 µA (short-Detector checkout)
 - Targets
 - Deuterium, Carbon, and Dummy
- Experimental dosimetry (on front GEM)
 - o 70 kRad

Summary of work since the last collaboration meeting

- 1. GEM optimization see Xinzhan Bai's update
- 2. Beam test comparison with simulation see Ye Tian's update
- 3. SPD timing study (Carter Hedinger)
- 4. Pileup at high current
 - a. Deconvolution algorithm implemented (Jixie Zhang)
- 5. Cherenkov SPE (Zhiwen Zhao & Bo Yu)
 - a. Bench test with JLab Detector Group
- 6. Gain shift in shower PMT
- 7. $\pi^{+/-}$ Rejection of ECal
 - a. Simulation (Darren Upton and Spencer Opatrny)
 - b. Data

Minimum-Ionizing Particle Peak

- Mean energy loss near minimum of (dE/dx)
- Used for gain calibration / stability

From PDG

Minimum-Ionizing Particle Peak: Preshower Modules

- Mean energy loss near minimum of (dE/dx)
- Used for gain calibration / stability

Beam Test

- Minimum ionization peak (from π) observed in all scintillators and Ecal detectors at 18° setting
- At constant high voltage settings
 - Consistent MIP peak position
- No current dependence of MIP peak observed in preshower

Preshower MIP position as function of beam current

Minimum-Ionizing Particle Peak: Shower Modules

- Mean energy loss near minimum of (dE/dx)
- Used for gain calibration / stability

Beam Test

- Minimum ionization peak (from π) observed in all scintillators and Ecal detectors at 18° setting
- At constant high voltage settings
 - Consistent MIP peak position
- No current dependence of MIP peak observed in preshower
- Shower modules
 - Distinct current dependence of MIP peak position observed

End points are shifted

Source of Current Dependence

- 1. Baseline shift
 - a. Pileup at higher current
 - b. Pedestal measured without beam
 - c. Not properly subtracting baseline
 - d. Integrating fraction of baseline in each sample

From Ye Tian

MIP Peak Rate Dependence

- **Baseline shift** 1.
 - Pileup at higher current а.
 - Pedestal measured without beam b.
 - C.
 - Not properly subtracting baseline Integrating fraction of baseline in each sample **Too small to account for observed shift** d.
 - e.

Baseline vs beam current

MIP Peak Rate Dependence

MIP height vs beam current

- 1. Baseline shift
 - a. Pileup at higher current
 - b. Pedestal measured without beam
 - c. Not properly subtracting baseline
 - d. Integrating fraction of baseline in each sample
 - e. Too small to account for observed shift
- 2. Changing PMT Base gain
 - a. Increase in amplitude of raw signal at higher currents
 - b. Indicative of a redistribution of HV among dynodes

MIP Summary

- Shower modules experienced a (non-linear) increase in HV with increase in beam current
- Behavior was observed in test for NPS passive PMT bases (2012)
 - Passive bases used in beam test shower modules
- Left shower module (closest to beamline)
 - Started to fail around 60 μA
 - Recovered and continued to work properly at low currents
- Possible future bench test to further understand behavior with these bases

New Photomultiplier Active Base for Hall C Jefferson Lab Lead Tungstate Calorimeter

¹Vladimir Popov, ²Hamlet Mkrtchyan

¹RADCON/ESH&Q, Thomas Jefferson National Accelerator Facility, Newport News, Virginia, USA
²A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan, 0036, Armenia.

Fig. 6 Normalized gain as a function of pulse repetition rate of PbWO₄ scintillator similar LED light source.

Active base, initial amplitude: — 300mV; — 600mV; – 1000mV Passive base, initial amplitude: … 300mV; … 600mV

Summary of work since the last collaboration meeting

- 1. GEM optimization see Xinzhan Bai's update
- 2. Beam test comparison with simulation see Ye Tian's update
- 3. SPD timing study (Carter Hedinger)
- 4. Pileup at high current
 - a. Deconvolution algorithm implemented (Jixie Zhang)
- 5. Cherenkov SPE (Zhiwen Zhao & Bo Yu)
 - a. Bench test with JLab Detector Group
- 6. Gain shift in shower pmt
- 7. $\pi^{+/-}$ Rejection of ECal
 - a. Simulation Machine Learning (Darren Upton
 - b. Simulation Classical PID (Spencer Opatrny)
 - c. Data

Particle Identification: Electromagnetic Calorimeter

e⁻ Efficiency:

Not feasible without momentum selection Dominated by low energy background $\pi^{+/-}$ Rejection:

Comparison with SoLID simulation Comparison with SoLID pre-CDR

<u>SoLID pre-CDR</u>		
	Desired performance	
π^- rejection	≳[50:1]	
e^- efficiency	$\gtrsim 90\%$	
Energy resolution	$< 10\% / \sqrt{E}$	
Radiation resistance	$\gtrsim 400$ kRad	
Position resolution	$\lesssim 1 \text{ cm}$	

<u>Cuts</u>

Cherenkov

• Cherenkov NPE < 5

GEM track

• Projected tracking hitting center of Ecal

Scintillators

• Scin D and Scin B >200

<u>Cuts</u>

Cherenkov

• Cherenkov SPE < 5

GEM track

• Projected tracking passing through Ecal

Scintillators

• Scin D and Scin B >200

Preshower vs. Shower: 2-d cut (slope = -0.85)

Data: 10 μA

<u>Cuts</u>

Cherenkov

• Cherenkov SPE < 5

GEM track

• Projected tracking passing through Ecal

Scintillators

• Scin D and Scin B >200

Preshower vs. Shower: 2-d cut (slope = -0.85)

Cut adapted from PID on Simulation

Electron Distribution: Simulation

Spencer Opartny

<u>Cuts</u>

Cherenkov

• Cherenkov SPE < 5

GEM track

• Projected tracking passing through Ecal

Scintillators

• Scin D and Scin B >200

Preshower vs. Shower: 2-d cut (slope = -0.85)

Cut adapted from PID on Simulation

Applied to beam test data

Scan cut to obtain $\pi_{\rm rej}$ vs intercept

Data: 10 μA

Summary and Status of PID

- Apply same cuts to simulation
 - Trigger, Scintillator, Cherenkov, etc...
- Provides a baseline for comparison with data

Next Steps

- 1. Simulation
 - Did not use true PID in simulation
 - Better mixing of background
- 2. Data
 - Further refinements to Cherenkov SPE from recent bench test
 - Improvement with updates from GEM tracking

PID: Machine Learning (Darren Upton SULI project)

SoLID simulation (Beam Test)

- Applied Machine Learning techniques to perform PID on beam test simulated data
- Additional guidance from JLab Data Science group
- Multi-Layer Perceptron (MLP)
 - Shower, Preshower, Scintillators, GEM hit

From Darren Upton

PID: Machine Learning (Darren Upton & Spencer Opatrny)

SoLID simulation (Beam Test)

- Applied Machine Learning techniques to perform PID on beam test simulated data
- Additional guidance from JLab Data Science group
- Multi-Layer Perceptron (MLP)
 - Shower, Preshower, Scintillators, GEM hit
- In the initial phase. Needs additional work

Possibility to extend to data...

From Darren Upton

Summary and Conclusion

- Recent beam test has provided opportunity to
 - Study detector performance in high luminosity + background environment
 - Make comparison with SoLID simulation
- Shower base exhibited current dependent behavior
 - Due to passive PMT base
 - May study further in bench test
- Particle ID studies ongoing
 - $\pi^{+/-}$ Rejection of Ecal
- Documentation and summary report
 - Technical notes summarizing work and analysis
- Test data provide foundation for possible future AI/ML PID work

Thank You

Hall A/C staff, Hall C Technical Staff, Hall C Engineering Staff, RADCON, and (all) the running experiments

Trigger Design: 18° (move to backup)

Trigger Name	Logic	Threshold	Particle
TS 1	Cherenkov Sum + Shower Sum	Cherenkov: 2 pe Shower Sum: 0.5 mip	e
TS 2	Scin D + Scin B	0.5 mip	π
TS 3*	Scin A + Scin D		MIP
TS 4	Shower Sum	Variable	High energy e and γ
TS 5	2 out 16 Cherenkov		

*TS 3 was modified due to the high rate in Scin A TS 3 = Scin C + Scin D + Shower Sum

GEMs: Tracking

