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Introduction (Physics motivation)
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From Quark to Neutron Star

---------------- Bound systems, interacting by strong interaction with different scales [---------------;

Hadron Nucleus, Hypernucleus Neutron star [2] Strange hadronic matter?
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« They should be understood in the same framework based on the microscopic picture.

« Studying the mechanism of the Neutron Star would lead construction of realistic BB interactions.
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Hyperon Puzzle of Neutron Stars (NSs)

Radius vs. Mass of Neutron Star [1]
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« Hyperon-nucleon (YN) interaction is repulsive in the short range (by the Quark Cluster Model).

Effect of ANN 3BF by QMC [2]
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* Ais the first candidate of the hyperon appearance in Neutron Stars.

= ANN three-body forces (3BF) could support massive NSs by making the EoS stiffer.
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CLAS

 Ad differential & integrated cross-sections measurement by CLAS g10 dataset.
« Analysis from Oct 2021 ~
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1st-level Skimming (PID)



Number of Photon

Photon selection d": distance from the target center to event vertex
d/
tergck = teT — m, d: distance from the beam vertex to the SC t,y =T
t.,ent Was obtained by averagin - L e .
2 event y averaging - Compare with trigger time (t,)
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By cale = YRR > At = |t, - t| <20 ns (wide gate)
m?c? + p;, 1o select photon beam
Number of photon Number of photon
10°

£ 16— g N

3 F g10 g 25000 — MC
14 -
121 - The number of photons was 20000\~
10[— required to be one -
F for each event. e
63— 10000:—
4f— -
- 5000 —
2_— B

0:IIIIIIIIIIII““IIIII|IIII|IIII|IIII|IIII|IIII O_IIIIIIIIIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Number of photon Number of photon



1st & 2nd PID

y — é -t time the particle traveled from the event vertex to the TOF detector
t’ + d: known path length the particle traveled in the Drift Chamber (DC)

@

5mea3. & Beta measurement

p2(1 122 ) < 1st Particle ID
m?2 — : =222 The particle whose textbook reference value of the mass best matches
meas the calculated mass value is identified as the detected particle

0t = timeas — teale, £2" Particle ID (p vs. 8t plot)

N &ﬁerence between measured & calculated timing is ideally should be O.
tmeas = tsc — ttm’g Leale = d/(ﬁcalc . C) ‘

AB measurement
n? - To make PID better, a difference between
5calc — measured & calculated B was obtained.

m2C2 i p2 3
AB — Bcalc — Bmeas-

p: momentum by DC



24 PID (p vs. 6t plot) & AR Measurement

2" PID (p vs. ot plot)

* Proper cut parameters were applied.

p vs. &t (proton)

p vs. &t (proton)
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AB measurement
« The AP spectrum was fitted with Gaussian, and events within +-3c were selected.

Velocity measurement (proton) Velocity measurement (proton)
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Final p vs. *charge Plot

« Through the above PID analysis, we could clearly identify protons, deuterons, and Tr-.

« We used these particles for the physics analysis of Ad scattering.
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Ad Event Selection



/\’ & A\ Identification

My = \/(Ep + E- )2 — |pp + P— |
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Main BG (pd scattering) Removal

A—1p decay & pd scattering .

The main background in Ad analysis is pd scattering
« Kinematically mixed in the MM(Xd—>/Ad)
- Cut the events over MM(Xd->pd)>0.9

although some Ad events were removed.
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Yield of Ad Scattering Events

Scattered A momentum index (Ap) % Equivalent to the missing mass method

* When calculating A" momentum (py ¢a1c), We assumed Ad->/A'd’ kinematics.

»

*  Pa caic Was compared to the measured momentum (P meas)-

42“ ] € Ap gate
« The difference between py meas & PA calc 1S “Ap.” 3 f‘x Events |
' &— where Ad scattering
« Events in the Ap gate (|Ap|<0.05 GeV/c) - Integrated cross-section \erred.
/ i >
: e -0.05 0 0.05 Ap[GeVic]
Scattering angle distribution of A’ (cosO.u)_
« After applying the Ap gate, cosB., spectra were obtained. A pp cosOnr + (Ep + ma)VB
PA’ cale =

3 / ma)2 — p2 ¢ ; ’
- Events where |cosBy|<0.6 - Differential cross-section 2((Za +ma)® — pj cosb)

A= mi - -mfi - 7723\, —mg + 2Esmy

B = 4m3,(p3 cosOpr — (B +mg)?) + A2,

A])A/ = PA’ meas — PA’ calcs




BG Subtraction before Cross-section Calculation

Ap (O.5<pA<O.75)
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Corrected Ap soectra

Final Ad events counting

« The Ap spectra were calculated in each A beam momentum range (dp, = 0.25 GeV/c)

« Then, BG structures were subtracted. Events remaining in the range of |Ap|<0.05 GeV/c were
used to derive a integrated cross-section.
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Corrected cosO.),, soectra

Final Ad events counting

« The cosB¢y spectra were calculated in each A beam momentum range (dp, = 0.25 GeV/c)

« Then, BG structures were subtracted. Events remaining in the range of |cosBgy|<0.6 were
used to derive a differential cross-section.
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Efficiency for Cross-sections

« The detection efficiency was estimated independently from CLAS Geant4 simulations.
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N path length (inside the LD, target)

» /s derived from both proton & neutron should be considered.
« Path lengths were calculated with & without Fermi momentum in each p, range.
» \We calculated the luminosity considering the Fermi momentum of the target particle: proton or neutron.

- Problem: The simulations handled by CLAS luminosity software
did not include resonance events such as A* and K* production.
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Estimation of resonance yield

« The number of resonance events included in the g10 data was estimated from the difference
between the simulation result of only the elementary process (yp2>K*A or yn>KCA)
and the g10 data result of the squared missing mass of yp2>AX.

« Then, scaling factors for current luminosities were calculated.
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Luminosity [cm™]
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Estimation of resonance yield

« The luminosity of the A beam before and after correction is shown below.
 In this analysis, we used the corrected values represented by red dots

to derive the cross-sections.
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Cross-sections
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Differential & Integrated cross-sections of Ad Scattering

Finally, the differential and integrated cross-sections in the |cosB.y|<0.6 range were measured

(dp,=0.25 GeV/c, dcosB;,=0.2).

Systematic errors will be estimated by changing the angular distribution of Ad scattering in Geant4.
The full analysis contents are currently summarized in a CLAS analysis note.
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» As afirst step in knowing many-body BB interactions to solve the “Hyperon puzzle in Neutron Star,
YNN data is essential. Therefore, we measured Ad differential and integrated cross-sections.

» After 1st-level skimming (PID), Ad events were selected
+ |Ap|<0.05 GeV/c - integrated cross-section
* |cosB¢gy|<0.6 = differential cross-section

 Efficiencies for differential & integrated cross-sections were estimated CLAS GSIM independently.
» Realistic Luminosity, which includes resonance events, was estimated using GSIM of elementary
processes.

 The CLAS g10 dataset successfully measured Ad differential and integrated cross-sections.
- E,:1.2-24GeV, p,:05-1.5GeV/c
* dp,=0.25 GeV/c, dcosO, = 0.2
» Integrated cross-section = 0.1 ~ 5 mb in the scattering angular range of |cosB.|<0.6
« Systematic errors will be estimated soon

« The CLAS analysis note is almost ready.



