RG-D Initial Analysis and Alignment Status

Matthew Maynes

CLAS Collaboration Meeting

November 8th, 2023

- ✤ First look at RG-D data:
 - $\circ \rho^0$ Electro-production Kinematics
- ✤ Alignment Status

ρ^0 Production Kinematics

$\pi^+\pi^-$ Invariant Mass

DC Alignment Status

- The Clas12 Drift Chamber System is made of 3 regions $R_{1'}$, R_2 and R_3 :
 - o Each Region contains 2 superlayers.
 - o Each superlayer is made of 6 layers of sense wires.
- Alignment is done by a series of translations and rotation to align the DC regions as designed in the nominal geometry:
 - 3 translations of all 3 regions range from 0.1 to 0.8 cm;
 - $\circ~$ 2 rotations for all 3 regions at 0.2 degrees.

DC Alignment Status

- ✤ The Clas12 Drift Chamber System is made of 3 regions R₁, R₂ and R₃:
 - o Each Region contains 2 superlayers.
 - o Each superlayer is made of 6 layers of sense wires.
- Alignment is done by a series of translations and rotation to align the DC regions as designed in the nominal geometry:
 - $\circ~$ 3 translations of all 3 regions range from 0.1 to 0.8 cm;
 - 2 rotations for all 3 regions at 0.2 degrees.
 - The RG-D alignment was performed using a 1 nA, zero field, empty target run.

Some Results after First & Second Iterations

- ✤ Red line is the result of the first iteration.
- ♦ Green line is the result with the RG-C alignment setting.
- ✤ Black line represents the nominal geometry.

Residuals Dependencies

Before Alignment

First Iteration

Second Iteration

- Colorful dots represent the polar θ_{e} angle bins.
- Black dots represents the vertex shifts in tens of microns.
 - The shift is with regard to a known target position.
- Different symbols shows the ϕ_e angle bins.

Electron z-Vertex Distributions

- From left to right along the beamline:
 - The first peak corresponds to the upstream window of empty cryogenic cell.
 - The second peak corresponds to the downstream window of empty cryogenic cell.
- The downstream peak represents the scattering chamber exit window.

Backup Slides

• The amplitudes of the final peak failed as a result of the final translation. These results will be corrected in the final alignment.

