Preliminary Monitoring on RG-D data

A preliminary study of current available RG-D data for TMD analysis in SIDIS processes

DANIEL MATAMOROS

SUPERVISOR: RAPHAËL DUPRÉ

European Research Council Established by the European Commission

Study of Transverse Momentum Dependent (TMD) functions in RG-D

Understand the structure of nuclei in terms of quarks and gluons through 3D momentum space distribution of hadrons.

This work: Nuclear TMDs

- modification of nucleons in the nuclear medium
- cross section components can be linked to parton level effect
- Study the problem of nucleon modifications in the nuclei (EMC effect)

N/q	U	L	Т
U	f_1		h_1^{\perp}
L		g_1	h_{1T}^L
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_1 h_{1T}^{\perp}$

Semi Inclusive Deep Innelastc Scattering (SIDIS)

- Hadron production through γ *
 - $> e(k) + N(p) -> e(k') + X(p') + h(P_h)$
 - detection of one of the produced hadrons
 - cross section -> convolution of TMD parton distributions and TMD fragmentation functions
- Experimental Observables: Cross section, Beam Spin Asymmetry
- Studied observables: $\cos \phi_h$, $\sin \phi_h$, $\cos 2\phi_h$

This Work: We use unpolarized nuclear targets where only the $\cos \varphi$, $\cos 2\varphi$ and $\sin \varphi$ components will contribute in this cross section.

RG-D comparison preliminary analysis

- Comparing Data from simulations and actual available data
- Using runs with LD2 and Sn targets
- Events considered with π + production
- Kinematical Variables specific to the hadron for TMDs:
 - z = Fraction of the virtual photon energy carried by the hadron.
 - pt² = transverse momentum of hadrons
- Vertex z cuts need to be considered according to target positions

Analysis

- Coincidences on e- and π + are considered
- Cuts on electron kinematic variables applied as follows:
 - \circ Q² > 1.5 GeV²
 - \circ 0.25 < y < 0.85
 - W > 2 GeV

Simulation Procedure

Pythia: Modified version for SIDIS: L.O. event generator on DIS on nucleus with added nuclear effects (nuclear fragmentation not included).

Beam polarization is not considered in the event generation.

Analysis & Comparison

- Coincidences on e- and π + are considered
- Cuts on electron kinematic variables applied as follows:
 - \circ Q² > 1.5 GeV²
 - \circ 0.25 < y < 0.85
 - \circ W > 2 GeV

red is simulated data blue is RG-D data

Analysis & Comparison

- Coincidences on e- and π + are considered
- Cuts on electron kinematic variables applied as follows:
 - \circ Q² > 1.5 GeV²
 - 0.25 < y < 0.85
 - \circ W > 2 GeV
- Cuts on Hadron kinematic Variables:
 0.3 < z < 0.7

red is simulated data blue is RG-D data

Multiplicity Ratio $R_A^{\pi}(Q^2,\nu,z,p_t^2) = \frac{N_{\pi}^{Sn}(Q^2,\nu,z,p_t^2)/N_e^{Sn}(Q^2,\nu)}{N_{\pi}^{De}(Q^2,\nu,z,p_t^2)/N_e^{De}(Q^2,\nu)}$

- Any deviation indicates nuclear modifications
- Very preliminary plots, no calibration implemented yet

Implemented work

- Progress on data analysis for a study of TMDs on SIDIS with observables (such as R).
- Modified Pythia version with DIS used for event generation. Simulation applying RG-D experimental conditions.
- Monitoring RG-D available data.

Study of the data

• Very preliminary analysis using a simulation non specific for TMD study and available cooked data

On going work

- Other observables remain to be studied ($\cos\varphi$, $\sin\varphi$ and Boer Mulders asymmetries)
- Modifications on RG-D simulations remain to be implemented in GEMC geometry
- Other Nuclear targets can be considered.
- Acceptance and Radiative effects.
- Consider beam polarization for eventual BSA
- Training Networks of Luminosity RG-D data using CLAS AI tools (j4np and AI tracking)