

5. Carman

Topics:

CLAS Collaboration Meetin

- Pass-2 calibration activities: RG-A, RG-B, RG-K
- Pass-1 calibration activities: RG-C
- "Online" calibrations: RG-D
- Work plans and next datasets

Active Run Groups in Calibration Mode - November 2023

#	Run Group	Dataset	Conditions	Run Range	Stage
1	RG-A	Spr18	LH2 6.4, 10.6 GeV, inbending+outbending (+ 2.2 GeV zero-field from engineering run)	3029 - 4325	Pass-1
2	RG-B	F19/W20	LD2 4.2, 10.2/10.5 GeV inbending+outbending	11093 - 11571	Pass-2
3	RG-C	Sum22/F22 /W23	Polarized NH3, ND3, 10.5 GeV, inbending; FT- On/FT-Off	16128 - 17811	Pass-1
4	RG-D	F23	LD2, C, Cu, Sn, 10.6 GeV inbending+outbending	18329 - TBD	"Online" calibration

Four different datasets are being calibrated in parallel

	Analysis Coordinator	Chef
RG-A	Latifa Elouadrhiri/Timothy Hayward	Nick Trotta
RG-B	Silvia Niccolai	Zhiwen Zhao
RG-C	Silvia Niccolai	Kayleigh Gates
RG-D	Lamiaa El Fassi	Mikhail Yurov

Calibration Timeline: July 2023 - February 2024 July 7, 2023

Calibration Status I

[1] RG-M W21 - Pass-1 calibration review Aug. 19, 2022

		MONTH 1							MONTH 2																														
		WE	EK 1		WEEK 2		K2			WEEK 3			WEEK 4			WEEK 5						WEEK 7								leek	9								
	M	TI	N Th	F	M	TI	W Th	F	M	T	W 1	'h F	M	T	W	Th	F	M	T N	V Th	F	M	T	W	Th I	FN	IT	W	Th	F	M	TI	1 1	h F	M	T	W	Th	F
Beam Offset Calibrations																																							
pass0-v1																																							
FTOF Calibrations																																							
pass0-v2																																							
RF calibrations																																							
pass0-v3																																							
cook calibration runs (DC, ECAL, CTOF, HTCC)																																							
calibrations done in parallel																																							
pass0-v4																												6	8	da	ve		1						
Check physics of runs																												0	,0	ua	y s		1						

<u>Timeline:</u>

- Original calibration window:
 - Sep. 1 Nov. 7, 2022
 - CVT alignment investigation (1.5 months)
 - end of year shutdown (3 weeks)
 - DC calibration work (3.5 months)
- Pass-1 review: May 23, 2023
- Cooking: Jun. 27, 2023 July 27, 2023

[2] RG-K W18 - Pass-2 calibration review Apr. 8, 2022

Day 1 Days 2-4 Days 5-8 Day 9	Cook runs 5703 & 5983 for 7.5 and 6.5 runs DC calibration Beam-offset & initial DC calibrations Pass 0-v1 cooking with beam-offset Pass 0-v1 Timelines	Milestone 1						
Days 10-11 Days 12-20 Days 21-24 Day 25	Cook 11 calibration runs for FTOF calibration TOF calibration (possible iteration needed) Pass 0-v2 cooking with FTOF ST and DC calibrations done Pass 0-v2 Timelines	Milestone 2						
Days 26 Days 27-30 Day 31	RF calibration using pass 0 v2 Pass 0-v3 cooking with RF calibration Pass 0-v3 Timelines	Milestone 3						
Days 32-33: Cook 11 calibration runs for subsystems calibration(DC, ECAL, FT, HTCC,) Days 34-44: Subsystem calibration (done in parallel), test of high-level QA on fully cooked runs Days 45-48: Pass 0-v4 with subsystem calibrations, cook of ~4 full runs to check high-lev physics Days 49-53 Pass 0-v4 timelines, final check of specs, investigation of full runs								

Timeline:

- Original calibration window:
 - Dec. 1, 2022 Feb. 14, 2023
 - beam offset calibration (2 months)
 - subsystem calibrations (1 month)
 - AI training/validation (2 months)
- Pass-2 review: Aug. 16, 2023
- Cooking: Aug. 28, 2023 Sep. 25, 2023

Calibration Status II

[3] RG-A F18 - Pass-2 calibration review Dec. 16, 2022

Timeline:

• Original calibration window:

- Jan. 16 Mar. 31, 2023
- beam offset calibration (1 month)
- DC calibrations (1.5 months)
- subsystem calibrations (1 month)
- AI validation (2 months)
- Pass-2 review: Sep. 22, 2023
- Cooking: Oct. 2, 2023 XXX (@83%)

[4] RG-B F19/W20 - Pass-2 calibration review Nov. 18, 2022

Calibrations sequence:

- DC and beam-offset calibrations + pass-0 cooking → monitors & timelines to establish runs to process
 FTOF calibration
- 3) RF calibration: run-by-run calibration after FTOF calibrations using pass-0 files + pass-0 cooking → monitors & timelines to make sure FTOF is OK before moving to the next step
- 4) CLAS12 subsystem calibration: DC, CND, CTOF, ECAL, FT (Hodo, Cal), HTCC, RICH?
- 5) Pass-0 cooking \rightarrow monitors & timelines; check of calibration quality vs run AI training in parallel
- 6) Reiterate, if necessary (for specific run ranges and/or detector subsystems)

Calibration timeline (conservative estimates):

- For 1) cooking needs: $\sim 2 \text{ runs} \rightarrow 1 \text{ day}$
- For 1) duration of DC calibration: ~2 days
- For 1) beam offset calibration: 1 day
- For 1) pass-0 cooking & timelines: ~3 days (MILESTONE 1)
 For 2) and 4) 15 must should be available for an immuno.
- For 2) and 4) ~15 runs should be cooked for calibration → ~5 days
 For 2) FTOF calibration of ~15 runs → ~10 days
- For 2) F1OF canoration of ~15 runs → ~10 days
 For 3) RF calibration requires a pass0 cooking: ~2 days + ~1 day for the calibration itself → 3 days
- For 3) pass-0 cooking & timelines: ~3 days (MILESTONE 2)
- For 4) Recooking of the ~10 runs \rightarrow ~4 days
- For the calibrations 4) of ~10 runs \rightarrow ~10 days (done in parallel)
- For 5) 3 days ideally the monitoring part will be included in the cooking workflow (MILESTONE 3)
 For 6) ~10 days including cookings, recalibrations, and further monitoring passes (MILESTONE 4)
- For 6) ~10 days including cookings, recalibrations, and further monitoring pa
 + 2 weeks to account for delays in cooking due to resource limitations.
- → TOTAL: ~69 days

Timeline:

- Original calibration window:
 - Jan. 1 Mar. 17, 2023
 - beam offset calibration and CVT alignment (3.5 months)
 - DC calibrations (3 months)
- Pass-2 review: Nov. 1, 2023
- Cooking: TBD (to be started soon)

[5] RG-C Sum22 - Pass-1 calibration review Jun. 23, 2023

Calibrations sequence:

- Complete beam-offset calibrations, DC calibration + pass-0 cooking → monitors & timelines to establish runs to process
 FTOF calibration
- 2) FTOF calibration
 3) RF calibration: run-by-run calibration after FTOF calibrations using pass-0 files + pass-0 cooking → monitors & timelines to make sur
- FTOF is OK before moving to the next step
- 4) CLAS12 subsystem calibration: DC, CND, CTOF, ECAL, FT (Hodo, Cal), HTCC (timing), RICH?
- 5) Pass-0 cooking → monitors & timelines; check of calibration quality vs run AI training in parallel
- 6) Reiterate, if necessary (for specific run ranges and/or detector subsystems)

Calibration timeline (tentative estimates)

- For 1) cooking needs: $\sim 2 \text{ runs} \rightarrow 1 \text{ day}$
- For 1) duration of DC calibration: ~2 days
 For 1) hear offset calibration: 1 day
- For 1) beam offset calibration: 1 day
 For 1) pass 0 cooking & timelines: -3 day
- For 1) pass-0 cooking & timelines: ~3 days (MILESTONE 1)
 For 2) and 4) ~7 runs should be cooked for calibration → ~3 days
- For 2) and 4) ~7 runs should be cooked for calibr
 For 2) FTOF calibration of ~7 runs → ~7 days
- For 3) RF calibration requires a pass0 cooking: \sim 2 days + \sim 1 day for the calibration itself \rightarrow 3 days
- For 3) pass-0 cooking & timelines: ~3 days (MILESTONE 2)
- For 4) Recooking of the \sim 7 runs $\rightarrow \sim$ 3 days
- For the calibrations 4) of \sim 7 runs $\rightarrow \sim$ 7 days (done in parallel) For 5) 3 days – ideally the monitoring part will be included in the cooking workflow (MILESTONE 3)
- For 5) 3 days ideally the monitoring part will be included in the cooking workflow (MILESTONE 3)
 For 6) ~10 days including cookings, recalibrations, and further monitoring passes (MILESTONE 4)
- For 6) ~10 days including cookings, recalibrations, and further monitoring passes
 +2 weeks to account for delays in cooking due to resource limitations.
- TOTAL: ~57 days

Timeline:

- Original calibration window:
 - Jul. 1 Aug. 31, 2023 (FT-On Sum22)
 - alignment (3 months)
 - beam offset calibration (1 month)
 - calibration now in progress
- Pass-1 review: TBD
- Cooking: TBD
- Note: Upcoming review to schedule work for FT-Off (F22), FT-On (W23)

RG-C Sum22 - Tracker Alignment

DELAY

- RG-C DC and CVT alignments for Sum22 were reported as complete at the last CLAS Collaboration meeting. However, it was discovered that zero field runs before and after the target system disassembly could not be combined.
- The Sum22 DC alignment and beam offset calibration had to be redone. This work has just been completed and the calibration work has resumed.
- While the Sum22 alignment was being redone, the F22 and W23 alignments were paused. They have recently been restarted.

This has resulted in a <u>significant</u> delay in calibrating RG-C - all of RG-C dataset was supposed to be calibrated by the end of 2023!

RG-C - Calibration Status

Where do things stand?

- Calibration focus has been solely on the Sum22 (FT-On) dataset
 - DC and CVT alignment
 - Raster calibration
 - Beam offset calibration 🥩
 - DC-CVT offset calibration
 - Subsystem calibrations: DC, FTOF 🥩
 - Next steps (Sum22):
 - RF calibration
 - ECAL, LTCC, HTCC, RICH, CND, CTOF, BAND, FT-Cal/FT-Hodo
 - HW status tables (run-by-run version?)
 - DC AI/denoising network training & validation
 - Monte Carlo vs. data efficiency comparison
 - Pass-1 ready for cooking review
- Next steps for F22/W23:
 - CVT alignment for F22 and W23 complete
 - DC alignment for F22 in progress (W23 work will follow)
 - Beam offset calibrations
 - CALCOM "ready for calibration" review (archaeology + timeline)
 - Subsystem calibrations to begin within the next month

Analysis Coordinator: Silvia Niccolai

Chef: Kayleigh Gates

Calibration Status III

	Run range	Beam	Torus	Solenoid
1	3000-3069	6.4 GeV	-100%	-100%
2	3070-3087	6.4 GeV	-75%	-100%
3	3097-3105	6.4 GeV	75%	-100%
4	3131-3293	10.6 GeV	100%	-100%
5	3304-3551	10.6 GeV	-100%	-100%
6	3698-3817	10.6 GeV	-100%	-100%
7	3819-3834	6.4 GeV	75%	-100%
8	3839-3853	6.4 GeV	100%	-100%
9	3855-3857	6.4 GeV	100%	-50%
10	3862-3987	10.6 GeV	100%	-100%
11	4001-4325	10.6 GeV	-100%	-100%

Spr18 126 mC **F18** 99 mC 58 mC Spr19 Questions about dataset usefulness

Note: DC HV was reduced for this run compared to F18 settings; "Massive" version of FMT installed

[6] RG-A Spr18 - Pass-1 calibration

RG-A F18 Early Inbending vs. Nominal Inbending

While not useful for all RG-A analyses, several of the experiments can make good use of these data

Calibration Status III

Next step: Complete <u>"ready for calibration" review</u> at CALCOM (Dec. 1) to detail the runs for calibration and the schedule for work tracking.

Calibration Status IV

[7] RG-D F23 - Online calibration

Color transparency, nuclear TMDs

RG-D is the third Run Group for which we are using the "online" calibration approach

- Calibrate runs during data taking to monitor detector and probe physics
- Complete tracker alignment runs @ B=0 early and analyze in order to move to final detector calibrations
- Run online pass-0 cooking and update calibration timelines daily to track calibrations and detector stability

Note: Online calibration mode proven critical for the success of both RG-M ($^{40}Ca/^{48}Ca$ target issue) and RG-C (track target polarization)

first experiment with new CLAS12 cryotarget

Target	Schedule
LD ₂	3
⁶³ Cu/ ¹¹⁸ Sn	8
LD ₂	3
¹² C/ ¹² C	7
LD ₂	2
⁶³ Cu/ ¹¹⁸ Sn	9
LD ₂	3
¹² C/ ¹² C	7
LD ₂	3
⁶³ Cu/ ¹¹⁸ Sn	11

Status:

- Online pass-0 running (<u>https://clas12mon.jlab.org/timelines/?rg=rgd</u>)
- Alignment (zero field) run taken
 DC and CVT alignment completed
- Initial reference run calibrations in progress

Goal:

 Complete calibrations within 6 months of beam off ⇒ <u>pass-1 review by June 2024</u>

RG-D - Tracking System Alignment

Alignment complete for the first time during data taking (3 weeks turn-around)

- Final DC iteration needed after DC calibration
- DC-CVT z-offset to be fixed

DC

The final calibration of the CLAS12 detector subsystems is now getting underway for the first time during data taking

θ (degrees)

$\text{RG-D} \rightarrow \text{RG-K Transition}$

- Luminosity limitations on RG-D solid targets due to CVT currents ⇒ the experiment is well behind their planned data collection
 - This is the only planned beam time for $RG-D \Rightarrow$ they need to finish their experiment this year
- The ion pump on the Faraday cup failed on Oct. 16
 - FC vacuum has been getting worse with time
 - Charge measure of FC is not precise and changing with time
 - Can calibrate FC run-by-run relative to other beamline devices, but this is not ideal and could limit accuracy (RG-D will need to study this)
 - RG-K much prefers to run experiment with beam charge determined by the FC with nominal FC vacuum
- For these reasons, the decision was made to adjust the Hall B run schedule to allow extend RG-D run and to delay RG-K start until Jan. 2024
 - RG-K run: Jan. 10 Mar. 10, 2024

RG-K - Commissioning Studies

- The schedule change reduces the RG-K run by 15 days to be made up when the last part of RG-K is scheduled in 2025/26
- The schedule is set to run 3-/4-pass in a ~50/50 split (*final planTBD*)
- As a bit of compensation, some of the RG-K commissioning will be completed in 2023:
 - Change from 5-pass to 3-pass on Dec. 15; RG-K commissioning period will run with the LH₂ target until beam off on the morning of Dec. 19:
 - DC HV studies (1.5-2 days) includes luminosity scans
 - Florian is developing a test plan that includes necessary calibration, cooking, and analysis to be completed by Jan. 10
 - Trigger validation (DC roads?)
 - AI validation (reliant on final trigger)
 - CVT testing (FSSR2 vs. SAMPA readout) (might not be possible but details on work needed)
 - HTCC gain calibration (trigger)
 - Gain calibrations: CTOF, ECAL, FTOF
 - Production test runs for validation
- The ion pump will be repaired/replaced early next year (after the tunnel cools down at bit)
- The solid target assembly and FMT will be removed over the break

RG-K - DC Test Plan

DC HV Studies for RGK

For the DC, we would like to take data under different conditions to study the effects of different HV settings on resolutions as well as opportunistic gathering data for high-lumi operation. The required measurements for resolutions can be separated from the high-lumi data and can be taken at different times. We estimate that all the tests will be overall 1 PAC day (2 beam days).

Resolution study: ~ 1.5 shift

Requirements:

- Hydrogen target
- 3rd or 4th pass beam (3rd pass preferred)
- Established production settings i.e., beam setup, trigger checkout, mini lumi scan done
- Electron trigger

The goal is to determine the effect of changes in DC HV settings on resolutions (tracking and physics quantities). We plan to study the improvement of track and missing mass resolution if the HV is increased in steps in different regions. The largest effect is expected for R2 drift chambers. The study requires collected data with sufficient statistics (~50M) for calibration and analysis of physics channels. The setting from RGM/C is R1=10, R2=10 and R3=10 (10, 10, 10). Note: without DC roads increase statistics goal by ~30%.

HV Settings for study:

Region 1 HV	Region 2 HV	Region 3 HV	Statistics Goal	Comment						
10	10	10	75M	RGM/C Setting						
9	10	10	50M	RGK Fall 2019 Setting						
10	11	11	50M	RGD Setting						
11	12	12	50M	Highest setting						
10	10	11	50M	Study effect of R3						
10	11	10	50M	Study effect of R2						
11	10	10	50M	Study effect of R1						
10	12	10	50M	Study effect of R2						

We estimated that 50M is about 2h-2.5h at 40nA. Therefore, the plan will take about twothree shifts to measure all the 50M runs. ~ 1h

ossible up to 150nA on LH2

etermine HV currents as a function of beam current and fill nents when the HV supply was limited to 40uA HV currents. d no DAQ. The plan is to increase the beam currents in steps ps) and wait till we have a stable 30s-60s of beam. The HV atically stored and will be analyzed later together with the eenshots of the DC HV will be logged. For each HV setting the at 15min. If HV trips at higher beam currents it will be kept off a logbook entry will be made.

creasement of beam currents to avoid any DC issues.

- Plan calls for performing a HV scan with data collection at each point for offline analysis.
- The plan is still being optimized and developed. It will be sent around shortly for feedback.
- The goal is to complete necessary calibrations, cooking, and analysis before the RG-K run starts on Jan. 10.
- The final HV setting choice will need to consider DC efficiency, momentum resolution, and safe DC HVPS channel currents at the operating luminosity.

Calibration Timeline: July 2023 - February 2024 November 3, 2023

Longer-Term CALCOM Work Items

 Documentation of calibration procedures: Tutorials for training Instructions for completing validation Github repository GitHub 	Calibration Suite Documentation: ■ Alignment: DC and FMT 嵒 ■ BAND: ■ Beam Offset: suite 嵒 ■ Cherenkov: ■ HTCC: suite 嵒, tutorial ם
 Automation: Interactive vs. batch running Online reconstruction/calibration compatibility (L3 trigger) Streamlining code suites: Increase speed of processing Code stability Updates to common tools across suites 	 LTCC: suite d in the suite
 Personnel: Additional calibration team members Cross-training and checking documentation Assign code developers for all suites 	 ■ FT-CAL: suite, tutorial 嵒 ■ FT-HODO: suite, tutorial 嵒 ■ FTOF: suite 嵒, tutorial 읍, algorithms 읍, ccdb 읍, geometry 읍 ■ RF: suite, tutorial 嵒 ■ RTPC: geom 욥, ccdb 嵒
 Long lead time procedures: Procedures to improve automation and validation necessary: Final calibrations reliant on tracker system alignment (DC, FMT, Beam offset calibrations (with or without beam raster) 	CVT,) 🗭 Good progress over the summer

Summary

- CALCOM has been overseeing the detector calibrations of the different CLAS12 datasets:
 - Recent focus: RG-A, B, C, D, K, M

6 pass-1/2 reviews completed in the past year

- Lessons learned are being incorporated into the process (main advances: DC alignment, DC calibrations, beam offset calibration)
- "Online" calibrations now established as our standard approach:
 - RG-D alignment (DC, CVT) + beam offsets completed *during data taking*!
 - Final calibrations in progress *during data taking*!
 - Organizing plans to continue with the upcoming run group RG-K (Annalisa D'Angelo) and RG-E (Hayk Hakobyan) (with RG-L (Raphael Dupre) on the horizon)
- CALCOM is overseeing the calibration effort to support the CLAS Collaboration:
 - Lots of folks are part of this work:

clas12_calcom@jlab.org

- CALCOM, Analysis Coordinators, chefs, timeline crew, subsystem group leaders, calibration team, alignment team, software group, data validators
- Dataset calibration is truly a *collaboration-wide effort*
- Upcoming work focus:
 - Now that pass-2 work is behind us (!), streamline calibration tools towards more automation and improved speed

Backup Slides

CLAS12 Calibration and Commissioning

Contents [hide]
1 CALCOM Committee
2 CLAS12 Subsystem Contact Persons
3 Commissioning Plans
4 CLAS12 Calibration
5 Meetings and Minutes

CALCOM Committee

The role of the CALCOM (Calibration and Commissioning) Group is to be responsible for the development of the tools/algorithms to calibrate the CLAS12 detector and to help ensure that the design performance specifications are met. In addition the CALCOM group is responsible for developing the CLAS12 commissioning plan and overseeing its execution.

The committee is composed by:

- 🛯 Daniel Carman 🗹 (chair / hardware)
- Raffaella De Vita M (software / hardware)
- Gagik Gavalian 🗹 (common tools)
- Maurizio Ungaro M (simulation)
- Veronique Ziegler 🗹 (reconstruction)

CLAS12 Subsystem Contact Persons

System	Subsystem	Contact Person(s)	Software Contact Person					
Calorimeters	ECAL	C. Smith	C. Smith					
	SVT	Y. Gotra	V. Ziegler					
Central Tracker	MM	Y. Gotra	F. Bossu, M. Defurne					
	RTPC	M. Hattawy	M. Hattawy					
	HTCC	Y. Sharabian	I. Illari, W. Phelps					
Cerenkov Counters	LTCC	M. Ungaro	V. Mascagna, M. Ungaro					
	RICH	M. Contalbrigo	M. Mirazita					
	FT-Cal	R. De Vita	R. De Vita					
Forward Tagger	FT-Hodo	N. Zachariou	R. De Vita					
	FT-Trk	R. De Vita	V. Ziegler					
Forward Tracker	DC	F. Hauenstein	V. Ziegler					
r orward fracker	FMT	Y. Gotra	V. Ziegler					
RF		R. De Vita	R. De Vita					
	FTOF	D.S. Carman	D.S. Carman					
Sciptillation Counters	CTOF	D.S. Carman	D.S. Carman					
Semimation Counters	CND	S. Niccolai	S. Niccolai					
	BAND	F. Hauenstein	F. Hauenstein					

CLAS12 Calibration

Ready for Calibration Reviews

RG-A: F18 D, Spr19
 RG-B: Spr19, F19/W20 D
 RG-C: Sum22 D
 RG-K: W18
 RG-M: F20/W21 D

Information for Analysis Coordinators:

- Calibration sequence [1]
- What are the calibration standards for CLAS12? [2]
- General information on CALCOM and "online" calibrations [3]
- Calibration and Software Development Teams: [4]
- Run-Based Monitoring <a>D
- CCDB Tables and Usage Policies
- CLAS12 Hardware Status Word Definitions

Calibration Suite Documentation:

- Alignment: DC and FMT 🗗
- BAND:
- Beam Offset: suite 🖾
- Cherenkov:
- HTCC: suite 🖾, tutorial 🗅
- LTCC: suite 🖾
- RICH: suite &, Time calibration D Cherenkov angle calibration D Monitoring histograms and timelines D CND: suite &, tutorial D, algorithms D
- CTOF: suite 🖾, tutorial D, algorithms D,ccdb D, geometry D
- = CVCF:
- = OV1. = MM:
- MM:
- SVT: suite 嵒 ■ DC: suite 嵒, tutorial ⊡, calibration wikipage 嵒
- ECAL: suite 🖾
- = FT:
- FT-CAL: suite, tutorial 🗗
- FT-HODO: suite, tutorial
- FTOF: suite 🖾, tutorial 🗅, algorithms 🗅, ccdb 🗅, geometry 🗅
- RF: suite, tutorial ¹/₂
- RTPC: geom ଔ, ccdb ଔ

Meetings and Minutes

Zoom meeting connection: [5] ₽
2011 Meetings
2013 Meetings
2014 Meetings
2014 Meetings
2015 Meetings
2016 Meetings
2017 Meetings
2018 Meetings
2019 Meetings
2020 Meetings
2021 Meetings
2021 Meetings
2021 Meetings
2022 Meetings
2022 Meetings
2022 Meetings
2022 Meetings

2023 Meetings

clas12_calcom@jlab.org

Pass-X Readiness Reviews

Readiness Review for "PASS-X" cooking of CLAS12 data

Cooking any CLAS12 data set is a computing-intensive process requiring detailed planning and preparatory work to guarantee the output data quality. For this reason, a "readiness review" is requested to authorize the start of the reconstruction data processing of any data set that makes a formal request for cooking to the CCC. The charge for this review is outlined below.

The review committee is requested to answer the charge questions based on the material presented by the Run Group and report its findings, comments, and recommendations to the CLAS Coordinating Committee.

Review Charge:

Charge #1: Is the quality of detector calibration and alignment adequate to achieve the performance specifications foreseen for CLAS12 or achievable at the current time, given the "state-of-the-art" calibration, alignment, and reconstruction algorithms?

Charge #2: Is data quality as a function of run number or time for the data set proposed for cooking stable and understood? Have runs been classified in terms of type (empty target, calibration, special, production, ...) and quality (golden run, known issues, ...), and is a detailed list available? Based on validation studies, have all CLAS12 subsystem performances been understood and issues identified?

Charge #3: Has a 'Hardware (HW) status table (i.e., bad channel table) been compiled for use in the data and MC reconstructions? Has the efficiency versus beam current been studied? How does it compare to MC simulations with the merged background? Are the DAQ translation tables correcting for all known cable swaps? At what stage(s) in the software?

Charge #4: Are analysis plans for the data set developed at adequate levels? Is the list of planned skims defined and tested running the analysis trains on preliminary data? Is all ancillary information (helicity, Faraday Cup, ...) available and understood?

Charge #5: Are the data processing tools that will be used adequate for the proposed processing task? Is the data management plan (staging area, tape destination, directory structure, logs, ...) defined and appropriate given the available resources? Is the estimate of processing time per event available and resources needed to complete the task sound?

Charge #6: Have the tools for monitoring the quality of the cooking output and identify/correct failures been defined and ready to be used?

Charge #7: Is the person-power identified and in-place for the proposed data processing?

<u>Committee</u>: Marco Battaglieri (chair), Nathan Baltzell, Marco Mirazita, Cole Smith, Larry Weinstein

<u>Role</u>: Final review of calibration quality, status tables, software and scripting before recommendation to *CCC* to approve production cooking (see the generic review charge).

Reviews:

- RG-B Spr19: Oct. 28, 2022
- RG-M 21/22: May 23, 2023
- RG-A Spr19: May 31, 2023
- RG-K W18: Aug. 16, 2023

- RG-A F18: Sep. 22, 2023
- RG-B F19/W20: Nov. 1, 2023
- RG-C Sum22: TBD
- RG-C F22/W23: TBD

6 reviews completed in the past year

Notes:

- The calibration quality for all subsystems should meet the defined QA specifications for all datasets to allow for minimal systematics when combining data taking years apart.
- The calibration QA specifications are well defined and the Run Groups are held to the same standards.
- The committee prepares their report for delivery to the CCC to give approval to start data processing.

2