Istituto Nazionale di Fisica Nucleare

RICH particle identification using Machine Learning

Armen Gyurjinyan
INFN - Laboratori Nazionali di Frascati

Outline

- Motivation
- RICH Alignment
- Data preprocessing for machine learning
- Data filtering
- Physics cuts to select subsample
- Machine learning model
- Model and data
- Input/Output features
- Preliminary results
- Comparison between CLAS12 Event Builder, RICH pass2, RICH NN

RICH alignment

RICH composition

3 aerogel planes
7 planar mirrors
10 spherical mirrors
MAPMT
6 alignment parameter ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \boldsymbol{\Theta}_{\mathrm{x}}$, $\boldsymbol{\theta}_{\mathrm{y}}, \boldsymbol{\theta}_{\mathrm{z}}$) per element

Total 126 parameters
However sensitive parameters are $\mathrm{z}, \boldsymbol{\theta}_{\mathrm{x}}, \boldsymbol{\theta}_{\mathrm{y}}$

RICH alignment

RICH composition

3 aerogel planes
7 planar mirrors
10 spherical mirrors
MAPMT
6 alignment parameter ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \boldsymbol{\Theta}_{\mathrm{x}}, \boldsymbol{\theta}_{\mathrm{y}}$, $\boldsymbol{\theta}_{z}$) per element

Total 126 parameters
However sensitive parameters are $\mathrm{z}, \boldsymbol{\theta}_{\mathrm{x}}, \boldsymbol{\theta}_{\mathrm{y}}$

RICH alignment limitations

Spherical mirrors upper and middle rows are not aligned in pass2 cooking.

Aerogel Layer 2 not aligned in pass2 cooking

RICH alignment limitations

Spherical mirrors upper and middle rows are not aligned in pass2 cooking.

Aerogel Layer 2 not aligned in pass2 cooking

New Approach with Neural Networks to bypass alignment task!

Data filtering

ep -> eph+ (т-)

Track based filters

- $1.5 \mathrm{GeV}<\mathrm{E}(\mathrm{e})<8 \mathrm{GeV}$
- One charged particle in the RICH
- At least one hit on MAPMT
- CLAS12 EB identifies as kaon or pion
- Missing $\boldsymbol{\pi}$ - cut for reactions $\mathbf{h +}$ kaon or pion

Hit based filters

- Remove noisy anode hits
- Remove background hits based on timing

Kaon/Pion training data selection

Kaon/Pion training data selection

Lambda mass square

Rho mass square

Kinematic coverage in training sample

Pion kinematic coverage

Kaon kinematic coverage

Hits distribution

Machine learning model

Training sample
 Kaons: 14283
 Pions : 16131

Average 10 hits per event

Model accuracy 66.7 \%.
May be low because of background and wrong labeled data.

Precision - What is the probability that the model will predict label correctly.

Recall - What percentage of actual labels were predicted correctly.

	Precision	Recall
Pion	67.8%	66.7%
Kaon	65.6%	66.6%

Machine learning model

Training sample
Kaons: 14283
Pions : 16131
Average 10 hits per event

Preliminary results

Training region

- RICH NN was able to reconstruct in all 3 aerogel layers, however background reduction still required
- Neural network is able to do predictions in aerogel layer 2, where RICH pass2 cooking is not aligned

Preliminary results

Outside training region based on momentum

- RICH NN was able to reconstruct in all 3 aerogel layers, however background reduction still required
- Neural network is able to do predictions in aerogel layer 2, where RICH pass2 cooking is not aligned
- Neural networks can be trained in one region and do prediction in other region as well.

Conclusion and next steps

- RICH NN was able to do predictions without alignment information in whole range. Further analysis is required to do background reduction, but important is that RICH NN was able to predict in the aerogel layer 2, where RICH is not aligned!
- Analyse the results to have better understanding on predictions.
- Improve the results based on data cleaning, more complex model selection or adding new input features.

Thank you for you attention! Questions?

Aerogel Layer 0

$3 \mathrm{GeV} / \mathrm{c}<\mathrm{P}<4 \mathrm{GeV} / \mathrm{c}$
$4 \mathrm{GeV} / \mathrm{c}<\mathrm{P}<5 \mathrm{GeV} / \mathrm{c}$
$5 \mathrm{GeV} / \mathrm{c}<\mathrm{P}<6 \mathrm{GeV} / \mathrm{c}$

$6 \mathrm{GeV} / \mathrm{c}$ < P

Aerogel Layer 1

Aerogel Layer 2

