

Istituto Nazionale di Fisica Nucleare

RICH particle identification using Machine Learning

Armen Gyurjinyan INFN - Laboratori Nazionali di Frascati

Hall B collaboration meeting, November 7-10,2023

Outline

- Motivation
 - RICH Alignment
- Data preprocessing for machine learning
 - Data filtering
 - Physics cuts to select subsample
- Machine learning model
 - Model and data
 - Input/Output features
- Preliminary results
 - Comparison between CLAS12 Event Builder, RICH pass2, RICH NN

RICH alignment

RICH composition 3 aerogel planes 7 planar mirrors 10 spherical mirrors MAPMT

6 alignment parameter (x,y,z, $\boldsymbol{\Theta}_{x}$, $\boldsymbol{\Theta}_{y}$, $\boldsymbol{\Theta}_{z}$) per element

Total 126 parameters

However sensitive parameters are z, $\boldsymbol{\Theta}_{x}^{},\,\boldsymbol{\Theta}_{y}^{}$

RICH alignment

4

mirrors

RICH alignment limitations

Spherical mirrors upper and middle rows are not aligned in pass2 cooking.

Aerogel Layer 2 not aligned in pass2 cooking

RICH alignment limitations

Spherical mirrors upper and middle rows are not aligned in pass2 cooking.

Aerogel Layer 2 not aligned in pass2 cooking

New Approach with Neural Networks to bypass alignment task!

Data filtering

ep -> eph+ (π-)

Track based filters

- 1.5 GeV < E(e) < 8 GeV
- **One** charged particle in the RICH
- At least one hit on MAPMT
- CLAS12 EB identifies as kaon or pion
- Missing π cut for reactions **h**+ kaon or pion

Hit based filters

- Remove noisy anode hits
- Remove background hits based on timing

Kaon/Pion training data selection

Kaon/Pion training data selection

Kinematic coverage in training sample

Hits distribution

Machine learning model

Machine learning model

Preliminary results

region

- RICH NN was able to reconstruct in all 3 aerogel layers, however background reduction still required
- Neural network is able to do predictions in aerogel layer 2, where RICH pass2 cooking is not aligned

Preliminary results

Outside training region based on momentum

- RICH NN was able to reconstruct in all 3 aerogel layers, however background reduction still required
- Neural network is able to do predictions in aerogel layer 2, where RICH pass2 cooking is not aligned

15

• Neural networks can be trained in one region and do prediction in other region as well.

Conclusion and next steps

- RICH NN was able to do predictions without alignment information in whole range. Further analysis is required to do background reduction, but important is that RICH NN was able to predict in the aerogel layer 2, where RICH is not aligned!
- Analyse the results to have better understanding on predictions.
- Improve the results based on data cleaning, more complex model selection or adding new input features.

Thank you for you attention! Questions?

