Beam Spin Asymmetries of Deeply Virtual Exclusive ρ⁰ Production at CLAS12

Nicholaus Trotta University of Connecticut

Motivation

- Generalized Parton Distribution (GPDs) give insight into the internal nucleon structure
- Accessing GPDs can be done by using different channels of deeply virtual vector meson production (DVMP)
 - With different channels accessing different GPDs
- Experimental results can help constrain and improve theoretical calculations of GPDs

	Meson	GPD flavor
		composition
\tilde{H} \tilde{E}	π^+	$\Delta u - \Delta d$
11, <i>L</i>	π^0	$2\Delta u + \Delta d$
H_T, \bar{E}_T	η	$2\Delta u - \Delta d$
10000 00000	$ ho^0$	2u + d
H, E	ρ^+	u-d
	ω	2u-d

Motivation

 GPDs can be access using structure functions extracted from experimental results like beam spin asymmetries and cross sections

$$\sigma = \sigma_0 + \sqrt{2\epsilon(1+\epsilon)}\sigma_{LT}^{\cos\phi}\cos\phi + \epsilon\sigma_{TT}^{\cos2\phi}\cos2\phi + \lambda_e\sqrt{2\epsilon(1-\epsilon)}\sigma_{LT'}^{\sin\phi}\sin\phi$$

$$A_{LU}^{\sin(\phi_t)} = \operatorname{Im}[\langle \bar{E}_T \rangle_{LT}^* \langle H \rangle_{LL} + \frac{1}{2} \langle H_T \rangle_{LT}^* \langle E \rangle_{LL}]$$

Goloskokov-Kroll model:

$$\begin{split} \sigma_{L} &\sim \left\{ \left(1 - \xi^{2} \right) \left| \langle \tilde{\boldsymbol{H}} \rangle \right|^{2} - 2\xi^{2} \operatorname{Re} \left[\langle \tilde{\boldsymbol{H}} \rangle^{*} \langle \tilde{\boldsymbol{E}} \rangle \right] - \frac{t'}{4m^{2}} \xi^{2} \left| \langle \tilde{\boldsymbol{E}} \rangle \right. \\ \sigma_{T} &\sim \left[\left(1 - \xi^{2} \right) \left| \langle \boldsymbol{H}_{T} \rangle \right|^{2} - \frac{t'}{8m^{2}} \left| \langle \bar{\boldsymbol{E}}_{T} \rangle \right|^{2} \right] \\ \sigma_{LT} &\sim \xi \sqrt{1 - \xi^{2}} \frac{\sqrt{-t'}}{2m} \operatorname{Re} \left[\langle \boldsymbol{H}_{T} \rangle^{*} \langle \tilde{\boldsymbol{E}} \rangle \right] \\ \sigma_{TT} &\sim \frac{t'}{16m^{2}} \left| \langle \bar{\boldsymbol{E}}_{T} \rangle \right|^{2} \\ \sigma_{LT'} &\sim \xi \sqrt{1 - \xi^{2}} \frac{\sqrt{-t'}}{2m} \operatorname{Im} \left[\langle \boldsymbol{H}_{T} \rangle^{*} \langle \tilde{\boldsymbol{E}} \rangle \right] \end{split}$$

Event Selection

Data Sets:

- RGA's Fall 2018 Inbending and Outbending
- Standard RGA's particle ID
- RGA's Momentum Corrections

Channel:

- ep -> eρ⁰p ->eπ⁺π⁻(p)
 - The outgoing proton is identified by missing mass techniques
 - ρ^0 decays into $\pi^+\pi^-$
 - The electron, and pions are found using forward detector
 - SIDIS cuts: $Q^2 > 1$ GeV², W > 2 GeV

Event Selection: Missing Mass (ep-> $e\pi^+\pi^-X$) cut

Exclusive Kinematics

Missing Mass Cut: 0.85 < MM < 1.1 GeV

Exclusive Kinematics

 $Q^2 vs x_B$

1D Bins in -t

- 5 bins in -t
- 9 equidistance bins in ϕ
- Events were divided into either positive or negative helicity
- 90 invariant mass were fitted
- N+ and N- are the amplitude of p^o fits in positive and negative helicity bins
- -t<1 is the region with dominant GPDs contributions (-t/Q2<<1)

$$BSA = \frac{1}{P_b} \frac{N_i^+ - N_i^-}{N_i^+ + N_i^-}$$

1D Bins in -t: Invariant Mass Fits Positive Helicity

1D Bins in -t: Invariant Mass Fits Negative Helicity

1D Bins in -t: BSA

1D Bins in -t: σ_{LT}/σ_0 Moment

-t<1 is the region with dominant GPDs contributions (-t/Q2<<1)

 σ_{LT}/σ_0 vs -t

3D Bins in x_b^2 , Q², and -t

- 5 bins in Q^2 and x_b
- Further divided into -t bins
- 9 equidistance bins in φ
- Events were divided into either positive or negative helicity
- 135 invariant mass were fitted
- N+ and N- are the amplitude of ρ° fits in positive and negative helicity bins

$$Q^2 vs x_b$$

 d_{10}^{10}
 d

$$BSA = \frac{1}{P_b} \frac{N_i^+ - N_i^-}{N_i^+ + N_i^-}$$

3D Bins in x_b,Q², and -t: BSA Inbending

3D Bins in x_b^2 , Q², and -t: BSA Inbending

3D Bins in $x_{\rm b}^2$, Q^2 , and -t: $\sigma_{\rm LT}/\sigma_0$

Dashed line zero

Inbending

3D Bins in x_b,Q², and -t: BSA Outbending

3D Bins in x_b,Q², and -t: BSA Outbending

18

3D Bins in $x_{\rm b}^2$, Q^2 , and -t: $\sigma_{\rm LT}/\sigma_0$

Dashed lines are zero

Outbending

N. Trotta

Maximum Likelihood Estimation Method (MLM)

- Can be used to to extract the modulations as an alternative method to the background subtraction
 - \circ Allows for extraction of the modulations without binning in the azimuthal angle, ϕ
 - No assumptions are made about the distributions of the parameters

• Requires minimizing the negative log of the likelihood function

$$-\log(L(\vec{\theta})) = N_{data} \log(\sum_{i}^{N_{MC}} 1 + A_{UU}^{\cos\phi} \cos(\phi) + A_{UU}^{\cos2\phi} \cos(2\phi)) - \sum_{i}^{N_{data}} \log(1 + A_{UU}^{\cos\phi} \cos(\phi) + A_{UU}^{\cos2\phi} \cos(2\phi) + A_{LU}^{\sin\phi} \sin(\phi))$$

Simulation: MC vc Reconstructed

Inbending

Outlook and Conclusion

- Our results found that Chiral Odd GPDs play a significant role in vector meson production
- These results come from accessing GPDs through beam spin asymmetries
- Future plans:
 - Cross section measurement
 - Spin density matrix elements (SDMEs)

Thank You!

Backup Slides

3D Bins in x_b^2 , Q², and -t: σ_{LT}^2/σ_0^2 Inbending

3D Bins in x_b^2 , Q², and -t: σ_{LT}^2/σ_0^2 Outbending

3D Bins Invariant Mass Fits Positive Helicity

3D Bins Invariant Mass Fits Positive Helicity

3D Bins Invariant Mass Fits Positive Helicity

el Ban (M

3D Bins Invariant Mass Fits Negative Helicity

3D Bins Invariant Mass Fits Negative Helicity

3D Bins Invariant Mass Fits Negative Helicity

